952
Views
74
CrossRef citations to date
0
Altmetric
Original Articles

Structure of β-Glucan Oligomer from Laminarin and Its Effect on Human Monocytes to Inhibit the Proliferation of U937 Cells

, , , , , & show all
Pages 553-558 | Received 06 Oct 2004, Accepted 16 Dec 2004, Published online: 22 May 2014

  • 1) Mueller, A., Raptis, J., Rice, P. J., Kalbfleisch, J. H., Stout, R. D., Ensley, H. E., Browder, W., and Williams, D. L., The influence of glucan polymer structure and solution conformation on binding to (1→3)-β-D-glucan receptors in a human monocyte-like cell line. Glycobiology, 10, 339–346 (2000).
  • 2) Wasser, S. P., Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl. Microbiol. Biotechnol., 60, 258–274 (2002).
  • 3) Miyazaki, T., Oikawa, N., Yadomae, T., Yamada, H., Yamada, Y., Hsu, H. Y., and Ito, H., Relationship between the chemical structure and antitumor activity of glucans prepared from Grifola umbellata. Carbohydr. Res., 69, 165–170 (1979).
  • 4) Yadomae, T., and Ohno, N., Structure-activity relationship of immunomodulating 1,3-β-D-glucans. Recent Res. Devel. Chem. Pharm. Sci., 1, 23–33 (1996).
  • 5) Kataoka, K., Muta, T., Yamazaki, S., and Takeshige, K., Activation of macrophages by linear (1→3)-β-D-glucans. Implications for the recognition of fungi by innate immunity. J. Biol. Chem., 277, 36825–36831 (2002).
  • 6) Okazaki, M., Adachi, Y., Ohno, N., and Yadomae, T., Structure-activity relationship of (1→3)-β-D-glucans in the induction of cytokine production from macrophages, in vitro. Biol. Pharm. Bull., 18, 1320–1327 (1995).
  • 7) Ishibashi, K., Miura, N. N., Adachi, Y., Ohno, N., and Yadomae, T., Relationship between solubility of grifolan, a fungal 1,3-β-D-glucan, and production of tumor necrosis factor by macrophages in vitro. Biosci. Biotechnol. Biochem., 65, 1993–2000 (2001).
  • 8) Kim, K. I., Shin, K. S., Jun, W. J., Hong, B. S., Shin, D. H., Cho, H. Y., Chang, H. I., Yoo, S. M., and Yang, H. C., Effects of polysaccharides from rhizomes of Curcuma zedoaria on macrophage functions. Biosci. Biotechnol. Biochem., 65, 2369–2377 (2001).
  • 9) Lee, J. N., Lee, D. Y., Ji, I. H., Kim, G. E., Kim, H. N., Sohn, J., Kim, S., and Kim, C. W., Purification of soluble β-glucan with immune-enhancing activity from the cell wall of yeast. Biosci. Biotechnol. Biochem., 65, 837–841 (2001).
  • 10) Lee, D. Y., Ji, I. H., Chang, H. I., and Kim, C. W., High-level TNF-α secretion and macrophage activity with soluble beta-glucans from Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem., 66, 233–238 (2002).
  • 11) Vetvicka, V., and Yvin, J.-C., Effects of marine β-1,3 glucan on immune reactions. Int. Immunopharmacol., 4, 721–730 (2004).
  • 12) Williams, D. L., McNamee, R. B., Jones, E. L., Pretus, H. A., Ensley, H. E., Browder, I. W., and DiLuzio, N. R., A method for the solubilization of a (1→3)-β-D-glucan isolated from Saccharomyces cerevisiae. Carbohydr. Res., 219, 203–213 (1991).
  • 13) Williams, D. L., Pretus, H. A., McNamee, R. B., Jones, E. L., Ensley, H. E., and Browder, I. W., Development of a water-soluble, sulfated (1→3)-β-D-glucan biological response modifier derived from Saccharomyces cerevisiae. Carbohydr. Res., 235, 247–257 (1992).
  • 14) Demleitner, S., Kraus, J., and Franz, G., Synthesis and antitumor activity of sulfoalkyl derivatives of curdlan and lichenan. Carbohydr. Res., 226, 247–252 (1992).
  • 15) Miyanishi, N., Iwamoto, Y., Watanabe, E., and Oda, T., Induction of TNF-α production from human peripheral blood monocytes with β-1,3-glucan oligomer prepared from laminarin with β-1,3-glucanase from Bacillus clausii NM-1. J. Bios. Bioeng., 95, 192–195 (2003).
  • 16) Pang, Z., Otaka, K., Suzuki, Y., Goto, K., and Ohnishi, M., Purification and characterization of an endo-1,3-β-glucanase from Arthrobacter sp. J. Biol. Macromol., 4, 57–66 (2004).
  • 17) Nelson, N., A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem., 153, 375–380 (1944).
  • 18) Somogyi, M., Notes on sugar determination. J. Biol. Chem., 195, 19–23 (1952).
  • 19) DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F., Colorimetric method for determination of sugars and related substances. Anal. Chem., 28, 350–356 (1956).
  • 20) Kumagai, K., Itoh, K., Hinuma, S., and Tada, M., Pretreatment of plastic petri dishes with fetal calf serum. A simple method for macrophage isolation. J. Immunol. Methods, 29, 17–25 (1979).
  • 21) Maeda, M., and Nisizawa, K., Fine structure of laminaran of Eisenia bicyclis. J. Biochem. (Tokyo), 63, 199–206 (1968).
  • 22) Usui, T., Toriyama, T., and Mizuno, T., Structural investigation of laminaran of Eisenia bicyclis. Agric. Biol. Chem., 43, 603–611 (1979).
  • 23) Read, S. M., Currie, G., and Bacic, A., Analysis of the structural heterogeneity of laminarin by electrospray-ionisation-mass spectrometry. Carbohydr. Res., 281, 187–201 (1996).
  • 24) Chizhov, A. O., Dell, A., Morris, H. R., Reason, A. J., Haslam, S. M., McDowell, R. A., Chizhov, O. S., and Usov, A. I., Structural analysis of laminarans by MALDI and FAB mass spectrometry. Carbohydr. Res., 310, 203–210 (1998).
  • 25) Tanaka, S., Aketagawa, J., Takahashi, S., Shibata, Y., Tsumuraya, Y., and Hashimoto, Y., Activation of a limulus coagulation factor G by (1→3)-β-D-glucans. Carbohydr. Res., 218, 167–174 (1991).
  • 26) Petersen, B. O., Krah, M., Duus, J. O., and Thomsen, K. K., A transglycosylating 1,3(4)-β-glucanase from Rhodothermus marinus—NMR analysis of enzyme reactions. Eur. J. Biochem., 267, 361–369 (2000).
  • 27) Thornton, B. P., Vetvicka, V., Pitman, M., Goldman, R. C., and Ross, G. D., Analysis of the sugar specificity and molecular location of the β-glucan-binding lectin site of complement receptor type 3 (CD11b/CD18). J. Immunol., 156, 1235–1246 (1996).
  • 28) Yan, J., Vetvicka, V., Xia, Y., Coxon, A., Carroll, M. C., Mayadas, T. N., and Ross, G. D., β-Glucan, a “specific” biologic response modifier that uses antibodies to target tumors for cytotoxic recognition by leukocyte complement receptor type 3 (CD11b/CD18). J. Immunol., 163, 3045–3052 (1999).
  • 29) Taylor, P. R., Brown, G. D., Reid, D. M., Willment, J. A., Martinez-Pomares, L., Gordon, S., and Wong, S. Y. C., The β-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J. Immunol., 169, 3876–3882 (2002).
  • 30) Brown, G. D., and Gordon, S., Immune recognition: A new receptor for β-glucans. Nature, 413, 36–37 (2001).
  • 31) Brown, G. D., Herre, J., Williams, D. L., Willment, J. A., Marshall, A. S. J., and Gordon, S., Dectin-1 mediates the biological effects of β-glucans. J. Exp. Med., 197, 1119–1124 (2003).
  • 32) Ohno, N., Shinohara, H., and Yadomae, T., Conformation of the (1→3)-β-D-glucan in the sclerotia of Sclerotinia sclerotiorum IFO 9395 assessed by 13C-c.p.-m.a.s. n.m.r. spectroscopy. Carbohydr. Res., 168, 110–114 (1987).
  • 33) Hrmova, M., and Fincher, G. B., Purification and properties of three (1→3)-β-D-glucanase isoenzymes from young leaves of barley (Hordeum vulgare). Biochem. J., 289, 453–461 (1993).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.