193
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

The Role of Conserved Arginine Residue in Loop 4 of Glycoside Hydrolase Family 10 Xylanases

, , &
Pages 904-910 | Received 04 Oct 2004, Accepted 10 Feb 2005, Published online: 22 May 2014

  • 1) Bissoon, S., Christov, L., and Singh, S., Bleach boosting effects of purified xylanase from Thermomyces lanuginosus SSBP on bagasse pulp. Process Biochem., 37, 567–572 (2002).
  • 2) La Grange, D. C., Pretorius, I. S., Claeyssens, M., and van Zyl, W. H., Degradation of xylan to D-xylose by recombinant Saccharomyces cerevisiae coexpressing the Aspergillus niger β-xylosidase (xlnD) and the Trichoderma reesei xylanase II (xyn2) genes. Appl. Environ. Microbiol., 67, 5512–5519 (2001).
  • 3) Bourne, Y., and Henrissat, B., Glycoside hydrolases and glycosyltransferases: Families and functional modules. Curr. Opin. Struct. Biol., 11, 593–600 (2001).
  • 4) Derewenda, U., Swenson, L., Green, R., Wei, Y., Morosoli, R., Shareck, F., Kluepfel, D., and Derewenda, Z. S., Crystal structure, at 2.6-Å resolution, of the Streptomyces lividans xylanase A, a member of the F family of β-1,4-D-glycanases. J. Biol. Chem., 269, 20811–20814 (1994).
  • 5) Fujimoto, Z., Kuno, A., Kaneko, S., Kobayashi, H., Kusakabe, I., and Mizuno, H., Crystal structures of the sugar complexes of Streptomyces olivaceoviridis E-86 xylanase: Sugar binding structure of the family 13 carbohydrate binding module. J. Mol. Biol., 316, 65–78 (2002).
  • 6) White, A., Withers, S. G., Gilkes, N. R., and Rose, D. R., Crystal structure of the catalytic domain of the β-1,4-glycanase cex from Cellulomonas fimi. Biochemistry, 33, 12546–12552 (1994).
  • 7) Harris, G. W., Jenkins, J. A., Connerton, I., Cummings, N., Lo Leggio, L., Scott, M., Hazlewood, G. P., Laurie, J. I., Gilbert, H. J., and Pickersgill, R. W., Structure of the catalytic core of the family F xylanase from Pseudomonas fluorescens and identification of the xylopentaose-binding sites. Structure, 2, 1107–1116 (1994).
  • 8) Natesh, R., Bhanumoorthy, P., Vithayathil, P. J., Sekar, K., Ramakumar, S., and Viswamitra, M. A., Crystal structure at 1.8 Å resolution and proposed amino acid sequence of a thermostable xylanase from Thermoascus aurantiacus. J. Mol. Biol., 288, 999–1012 (1999).
  • 9) MacLeod, A. M., Lindhorst, T., Withers, S. G., and Warren, R. A., The acid/base catalyst in the exoglucanase/xylanase from Cellulomonas fimi is glutamic acid 127: Evidence from detailed kinetic studies of mutants. Biochemistry, 33, 6371–6376 (1994).
  • 10) Tull, D., Withers, S. G., Gilkes, N. R., Kilburn, D. G., Warren, R. A., and Aebersold, R., Glutamic acid 274 is the nucleophile in the active site of a “retaining” exoglucanase from Cellulomonas fimi. J. Biol. Chem., 266, 15621–15625 (1991).
  • 11) Charnock, S. J., Spurway, T. D., Xie, H., Beylot, M. H., Virden, R., Warren, R. A., Hazlewood, G. P., and Gilbert, H. J., The topology of the substrate binding clefts of glycosyl hydrolase family 10 xylanases are not conserved. J. Biol. Chem., 273, 32187–32199 (1998).
  • 12) Lo Leggio, L., Jenkins, J., Harris, G. W., and Pickersgill, R. W., X-ray crystallographic study of xylopentaose binding to Pseudomonas fluorescens xylanase A. Proteins, 41, 362–373 (2000).
  • 13) Ducros, V., Charnock, S. J., Derewenda, U., Derewenda, Z. S., Dauter, Z., Dupont, C., Shareck, F., Morosoli, R., Kluepfel, D., and Davies, G. J., Substrate specificity in glycoside hydrolase family 10. Structural and kinetic analysis of the Streptomyces lividans xylanase 10A. J. Biol. Chem., 275, 23020–23026 (2000).
  • 14) Andrews, S. R., Charnock, S. J., Lakey, J. H., Davies, G. J., Claeyssens, M., Nerinckx, W., Underwood, M., Sinnott, M. L., Warren, R. A., and Gilbert, H. J., Substrate specificity in glycoside hydrolase family 10. Tyrosine 87 and leucine 314 play a pivotal role in discriminating between glucose and xylose binding in the proximal active site of Pseudomonas cellulosa xylanase 10A. J. Biol. Chem., 275, 23027–23033 (2000).
  • 15) Pell, G., Szabo, L., Charnock, S. J., Xie, H., Gloster, T. M., Davies, G. J., and Gilbert, H. J., Structural and biochemical analysis of Cellvibrio japonicus xylanase 10C: How variation in substrate-binding cleft influences the catalytic profile of family GH-10 xylanases. J. Biol. Chem., 279, 11777–11788 (2004).
  • 16) Fujimoto, Z., Kaneko, S., Kuno, A., Kobayashi, H., Kusakabe, I., and Mizuno, H., Crystal structures of decorated xylooligosaccharides bound to a family 10 xylanase from Streptomyces olivaceoviridis E-86. J. Biol. Chem., 279, 9606–9614 (2004).
  • 17) Pell, G., Taylor, E. J., Gloster, T. M., Turkenburg, J. P., Fontes, C. M., Ferreira, L. M., Nagy, T., Clark, S. J., Davies, G. J., and Gilbert, H. J., The mechanisms by which family 10 glycoside hydrolases bind decorated substrates. J. Biol. Chem., 279, 9597–9605 (2004).
  • 18) Lo Leggio, L., Kalogiannis, S., Eckert, K., Teixeira, S. C. M., Bhat, M. K., Andrei, C., Pickersgill, R. W., and Larsen, S., Substrate specificity and subsite mobility in T. aurantiacus xylanase 10A. FEBS Lett., 509, 303–308 (2001).
  • 19) Nishimoto, M., Kitaoka, M., and Hayashi, K., Employing chimeric xylanases to identify regions of an alkaline xylanase participating in enzyme activity at basic pH. J. Biosci. Bioeng., 94, 395–400 (2002).
  • 20) Nishimoto, M., Honda, Y., Kitaoka, M., and Hayashi, K., A kinetic study on pH-activity relationship of XynA from alkaliphilic Bacillus halodurans C-125 by using aryl-xylobiosides. J. Biosci. Bioeng., 93, 428–430 (2002).
  • 21) Ke, S. H., and Madison, E. L., Rapid and efficient site-directed mutagenesis by single-tube ‘megaprimer’ PCR method. Nucleic Acids Res., 25, 3371–3372 (1997).
  • 22) Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685 (1970).
  • 23) Gill, S. C., and von Hippel, P. H., Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem., 182, 319–326 (1989).
  • 24) Kitaoka, M., Haga, K., Kashiwagi, Y., Sasaki, T., Taniguchi, H., and Kusakabe, I., Kinetic studies on p-nitrophenyl-cellobioside hydrolyzing xylanse from Cellvibrio gilvus. Biosci. Biotechnol. Biochem., 57, 1987–1989 (1993).
  • 25) Waffenschmidt, S., and Jaenicke, L., Assay of reducing sugars in the nanomole range with 2,2′-bicinchoninate. Anal. Biochem., 165, 337–340 (1987).
  • 26) Honda, Y., Kitaoka, M., Sakka, K., Ohmiya, K., and Hayashi, K., An investigation of the pH-activity relationships of Cex, a family 10 xylanase from Cellulomonas fimi: Xylan inhibition and the influence of the nitro-substituted aryl-β-D-xylobiosides. J. Biosci. Bioeng., 93, 313–317 (2002).
  • 27) Dixon, M., The effect of pH on the affinities of enzymes for substrates and inhibitors. Biochem. J., 55, 161–170 (1953).
  • 28) Leatherbarrow, R. J., Using linear and non-linear regression to fit biochemical data. Trends Biochem. Sci., 15, 455–458 (1990).
  • 29) Guex, N., and Peitsch, M. C., SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis, 18, 2714–2723 (1997).
  • 30) Teplitsky, A., Mechaly, A., Stojanoff, V., Sainz, G., Golan, G., Feinberg, H., Gilboa, R., Reiland, V., Zolotnitsky, G., Shallom, D., Thompson, A., Shoham, Y., and Shoham, G., Structure determination of the extracellular xylanase from Geobacillus stearothermophilus by selenomethionyl MAD phasing. Acta Crystallogr. D Biol. Crystallogr., 60, 836–848 (2004).
  • 31) Charnock, S. J., Spurway, T. D., Xie, H., Beylot, M. H., Virden, R., Warren, R. A., Hazlewood, G. P., and Gilbert, H. J., The topology of the substrate binding clefts of glycosyl hydrolase family 10 xylanases are not conserved. J. Biol. Chem., 273, 32187–32199 (1998).
  • 32) Roberge, M., Shareck, F., Morosoli, R., Kluepfel, D., and Dupont, C., Characterization of active-site aromatic residues in xylanase A from Streptomyces lividans. Protein Eng., 12, 251–257 (1999).
  • 33) Charnock, S. J., Lakey, J. H., Virden, R., Hughes, N., Sinnott, M. L., Hazlewood, G. P., Pickersgill, R., and Gilbert, H. J., Key residues in subsite F play a critical role in the activity of Pseudomonas fluorescens subspecies cellulosa xylanase A against xylooligosaccharides but not against highly polymeric substrates such as xylan. J. Biol. Chem., 272, 2942–2951 (1997).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.