188
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Disruption of the Availability of Amino Acids Induces a Rapid Reduction of Serine Phosphorylation of Insulin Receptor Substrate-1 in Vivo and in Vitro

, &
Pages 989-998 | Received 20 Dec 2004, Accepted 28 Feb 2005, Published online: 22 May 2014

  • 1) Burnett, P. E., Barrow, R. K., Cohen, N. A., Snyder, S. H., and Sabatini, D. M., RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc. Natl. Acad. Sci. U. S. A., 95, 1432–1437 (1998).
  • 2) Brunn, G. J., Hudson, C. C., Sekulic, A., Williams, J. M., Hosoi, H., Houghton, P. J., Lawrence, J. C., Jr., and Abraham, R. T., Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science, 277, 99–101 (1997).
  • 3) Hara, K., Yonezawa, K., Weng, Q. P., Kozlowski, M. T., Belham, C., and Avruch, J., Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J. Biol. Chem., 273, 14484–14494 (1998).
  • 4) Yamauchi, T., Tobe, K., Tamemoto, H., Ueki, K., Kaburagi, Y., Yamamoto-Honda, R., Takahashi, Y., Yoshizawa, F., Aizawa, S., Akanuma, Y., Sonenberg, N., Yazaki, Y., and Kadowaki, T., Insulin signalling and insulin actions in the muscles and livers of insulin-resistant, insulin receptor substrate 1-deficient mice. Mol. Cell. Biol., 16, 3074–3084 (1996).
  • 5) Zick, Y., Insulin resistance: A phosphorylation-based uncoupling of insulin signaling. Trends Cell. Biol., 11, 437–441 (2001).
  • 6) Sykiotis, G. P., and Papavassiliou, A. G., Serine phosphorylation of insulin receptor substrate-1: A novel target for the reversal of insulin resistance. Mol. Endocrinol., 15, 1864–1869 (2001).
  • 7) Patti, M. E., Brambilla, E., Luzi, L., Landaker, E. J., and Kahn, C. R., Bidirectional modulation of insulin action by amino acids. J. Clin. Invest., 101, 1519–1529 (1998).
  • 8) Tremblay, F., and Marette, A., Amino acid and insulin signaling via the mTOR/p70 S6 kinase pathway. A negative feedback mechanism leading to insulin resistance in skeletal muscle cells. J. Biol. Chem., 276, 38052–38060 (2001).
  • 9) Toyoshima, Y., Ohne, Y., Takahashi, S., Noguchi, T., and Kato, H., Dietary protein deprivation decreases the serine phosphorylation of insulin receptor substarate-1 in rat skeletal muscle. J. Mol. Endocrinol., 32, 519–531 (2004).
  • 10) Endo, Y., Fu, Z., Abe, K., Arai, S., and Kato, H., Dietary protein quantity and quality affect rat hepatic gene expression. J. Nutr., 132, 3632–3637 (2002).
  • 11) Faria, T. N., Blakesley, V. A., Kato, H., Stannard, B., LeRoith, D., and Roberts, C. T., Jr., Role of the carboxyl-terminal domains of the insulin and insulin-like growth factor I receptors in receptor function. J. Biol. Chem., 269, 13922–13928 (1994).
  • 12) White, M. F., The IRS-signalling system: A network of docking proteins that mediate insulin action. Mol. Cell Biochem., 182, 3–11 (1998).
  • 13) Aguirre, V., Uchida, T., Yenush, L., Davis, R., and White, M. F., The c-Jun NH (2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser (307). J. Biol. Chem., 275, 9047–9054 (2000).
  • 14) Hirosumi, J., Tuncman, G., Chang, L., Gorgun, C. Z., Uysal, K. T., Maeda, K., Karin, M., and Hotamisligil, G. S., A central role for JNK in obesity and insulin resistance. Nature, 420, 333–336 (2002).
  • 15) Hemi, R., Paz, K., Wertheim, N., Karasik, A., Zick, Y., and Kanety, H., Transactivation of ErbB2 and ErbB3 by tumor necrosis factor-alpha and anisomycin leads to impaired insulin signaling through serine/threonine phosphorylation of IRS proteins. J. Biol. Chem., 277, 8961–8969 (2002).
  • 16) Beugnet, A., Tee, A. R., Taylor, P. M., and Proud, C. G., Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability. Biochem. J., 372, 555–566 (2003).
  • 17) De Fea, K., and Roth, R. A., Protein kinase C modulation of insulin receptor substrate-1 tyrosine phosphorylation requires serine 612. Biochemistry, 36, 12939–12947 (1997).
  • 18) De Fea, K., and Roth, R. A., Modulation of insulin receptor substrate-1 tyrosine phosphorylation and function by mitogen-activated protein kinase. J. Biol. Chem., 272, 31400–31406 (1997).
  • 19) Takano, A., Usui, I., Haruta, T., Kawahara, J., Uno, T., Iwata, M., and Kobayashi, M., Mammalian target of rapamycin pathway regulates insulin signaling via subcellular redistribution of insulin receptor substrate 1 and integrates nutritional signals and metabolic signals of insulin. Mol. Cell. Biol., 21, 5050–5062 (2001).
  • 20) Peterson, R. T., Desai, B. N., Hardwick, J. S., and Schreiber, S. L., Protein phosphatase 2A interacts with the 70-kDa S6 kinase and is activated by inhibition of FKBP12-rapamycinassociated protein. Proc. Natl. Acad. Sci. U.S.A., 96, 4438–4442 (1999).
  • 21) Carlson, C. J., White, M. F., and Rondinone, C. M., Mammalian target of rapamycin regulates IRS-1 serine 307 phosphorylation. Biochem. Biophys. Res. Commun., 316, 533–539 (2004).
  • 22) Edinger, A. L., Linardic, C. M., Chiang, G. G., Thompson, C. B., and Abraham, R. T., Differential effects of rapamycin on mammalian target of rapamycin signaling functions in mammalian cells. Cancer Res., 63, 8451–8460 (2003).
  • 23) Kim, D. H., Sarbassov, D. D., Ali, S. M., King, J. E., Latek, R. R., Erdjument-Bromage, H., Tempst, P., and Sabatini, D. M., mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell, 110, 163–175 (2002).
  • 24) Yonezawa, K., Tokunaga, C., Oshiro, N., and Yoshino, K., Raptor, a binding partner of target of rapamycin. Biochem. Biophys. Res. Commun., 313, 437–441 (2004).
  • 25) Schalm, S. S., Fingar, D. C., Sabatini, D. M., and Blenis, J., TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr. Biol., 13, 797–806 (2003).
  • 26) Nojima, H., Tokunaga, C., Eguchi, S., Oshiro, N., Hidayat, S., Yoshino, K., Hara, K., Tanaka, N., Avruch, J., and Yonezawa, K., The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J. Biol. Chem., 278, 15461–15464 (2003).
  • 27) Gual, P., Gremeaux, T., Gonzalez, T., Le Marchand-Brustel, Y., and Tanti, J. F., MAP kinases and mTOR mediate insulin-induced phosphorylation of insulin receptor substrate-1 on serine residues 307, 612 and 632. Diabetologia, 46, 1532–1542 (2003).
  • 28) Ozes, O. N., Akca, H., Mayo, L. D., Gustin, J. A., Maehama, T., Dixon, J. E., and Donner, D. B., A phosphatidylinositol 3-kinase/Akt/mTOR pathway mediates and PTEN antagonizes tumor necrosis factor inhibition of insulin signaling through insulin receptor substrate-1. Proc. Natl. Acad. Sci. U.S.A., 98, 4640–4645 (2001).
  • 29) Favre, B., Turowski, P., and Hemmings, B. A., Differential inhibition and posttranslational modification of protein phosphatase 1 and 2A in MCF7 cells treated with calyculin-A, okadaic acid, and tautomycin. J. Biol. Chem., 272, 13856–13863 (1997).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.