318
Views
35
CrossRef citations to date
0
Altmetric
Original Articles

Characterization of Glycosynthase Mutants Derived from Glycoside Hydrolase Family 10 Xylanases

, &
Pages 1210-1217 | Received 08 Nov 2005, Accepted 05 Jan 2006, Published online: 22 May 2014

  • 1) Biely, P., Microbial xylanolytic systems. Trends Biotechnol., 3, 286–290 (1985).
  • 2) Collins, T., Gerday, C., and Feller, G., Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev., 29, 3–23 (2005).
  • 3) Henrissat, B., A classification of glycosyl hydrolases based on amino-acid sequence similarities. Biochem. J., 280, 309–316 (1991).
  • 4) Henrissat, B., and Davies, G., Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol., 7, 637–644 (1997).
  • 5) McCarter, J. D., and Withers, S. G., Mechanisms of enzymatic glycoside hydrolysis. Curr. Opin. Struct. Biol., 4, 885–892 (1994).
  • 6) White, A., and Rose, D. R., Mechanism of catalysis by retaining β-glycosyl hydrolases. Curr. Opin. Struct. Biol., 7, 645–651 (1997).
  • 7) Derewenda, U., Swenson, L., Green, R., Wei, Y., Morosoli, R., Shareck, F., Kluepfel, D., and Derewenda, Z. S., Crystal structure, at 2.6-Å resolution, of the Streptomyces lividans xylanase A, a member of the F family of β-1,4-D-glycanases. J. Biol. Chem., 269, 20811–20814 (1994).
  • 8) Dominguez, R., Souchon, H., Spinelli, S., Dauter, Z., Wilson, K. S., Chauvaux, S., Beguin, P., and Alzari, P. M., A common protein fold and similar active site in two distinct families of β-glycanases. Nat. Struct. Biol., 2, 569–576 (1995).
  • 9) Fujimoto, Z., Kuno, A., Kaneko, S., Yoshida, S., Kobayashi, H., Kusakabe, I., and Mizuno, H., Crystal structure of Streptomyces olivaceoviridis E-86 β-xylanase containing xylan-binding domain. J. Mol. Biol., 300, 575–585 (2000).
  • 10) Harris, G. W., Jenkins, J. A., Connerton, I., Cummings, N., Lo Leggio, L., Scott, M., Hazlewood, G. P., Laurie, J. I., Gilbert, H. J., and Pickersgill, R. W., Structure of the catalytic core of the family F xylanase from Pseudomonas fluorescens and identification of the xylopentaose-binding sites. Structure, 2, 1107–1116 (1994).
  • 11) Natesh, R., Bhanumoorthy, P., Vithayathil, P. J., Sekar, K., Ramakumar, S., and Viswamitra, M. A., Crystal structure at 1.8 Å resolution and proposed amino acid sequence of a thermostable xylanase from Thermoascus aurantiacus. J. Mol. Biol., 288, 999–1012 (1999).
  • 12) Payan, F., Leone, P., Porciero, S., Furniss, C., Tahir, T., Williamson, G., Durand, A., Manzanares, P., Gilbert, H. J., Juge, N., and Roussel, A., The dual nature of the wheat xylanase protein inhibitor XIP-I: structural basis for the inhibition of family 10 and family 11 xylanases. J. Biol. Chem., 279, 36029–36037 (2004).
  • 13) Pell, G., Szabo, L., Charnock, S. J., Xie, H., Gloster, T. M., Davies, G. J., and Gilbert, H. J., Structural and biochemical analysis of Cellvibrio japonicus xylanase 10C: how variation in substrate-binding cleft influences the catalytic profile of family GH-10 xylanases. J. Biol. Chem., 279, 11777–11788 (2004).
  • 14) Pell, G., Taylor, E. J., Gloster, T. M., Turkenburg, J. P., Fontes, C. M., Ferreira, L. M., Nagy, T., Clark, S. J., Davies, G. J., and Gilbert, H. J., The mechanisms by which family 10 glycoside hydrolases bind decorated substrates. J. Biol. Chem., 279, 9597–9605 (2004).
  • 15) Schmidt, A., Gubitz, G. M., and Kratky, C., Xylan binding subsite mapping in the xylanase from Penicillium simplicissimum using xylooligosaccharides as cryo-protectant. Biochemistry, 38, 2403–2412 (1999).
  • 16) Teplitsky, A., Mechaly, A., Stojanoff, V., Sainz, G., Golan, G., Feinberg, H., Gilboa, R., Reiland, V., Zolotnitsky, G., Shallom, D., Thompson, A., Shoham, Y., and Shoham, G., Structure determination of the extracellular xylanase from Geobacillus stearothermophilus by selenomethionyl MAD phasing. Acta Crystallogr. D Biol. Crystallogr., 60, 836–848 (2004).
  • 17) White, A., Withers, S. G., Gilkes, N. R., and Rose, D. R., Crystal structure of the catalytic domain of the β-1,4-glycanase cex from Cellulomonas fimi. Biochemistry, 33, 12546–12552 (1994).
  • 18) Jenkins, J., Lo Leggio, L., Harris, G., and Pickersgill, R., β-Glucosidase, β-galactosidase, family A cellulases, family F xylanases and two barley glycanases form a superfamily of enzymes with 8-fold β/α architecture and with two conserved glutamates near the carboxy-terminal ends of β-strands four and seven. FEBS Lett., 362, 281–285 (1995).
  • 19) Charnock, S. J., Spurway, T. D., Xie, H., Beylot, M. H., Virden, R., Warren, R. A., Hazlewood, G. P., and Gilbert, H. J., The topology of the substrate binding clefts of glycosyl hydrolase family 10 xylanases are not conserved. J. Biol. Chem., 273, 32187–32199 (1998).
  • 20) Mackenzie, L. F., Wang, Q., Warren, R. A. J., and Withers, S. G., Glycosynthases: mutant glycosidases for oligosaccharide synthesis. J. Am. Chem. Soc., 120, 5583–5584 (1998).
  • 21) Mayer, C., Jakeman, D. L., Mah, M., Karjala, G., Gal, L., Warren, R. A., and Withers, S. G., Directed evolution of new glycosynthases from Agrobacterium β-glucosidase: a general screen to detect enzymes for oligosaccharide synthesis. Chem. Biol., 8, 437–443 (2001).
  • 22) Mayer, C., Zechel, D. L., Reid, S. P., Warren, R. A., and Withers, S. G., The E358S mutant of Agrobacterium sp. β-glucosidase is a greatly improved glycosynthase. FEBS Lett., 466, 40–44 (2000).
  • 23) Nashiru, O., Zechel, D. L., Stoll, D., Mohammadzadeh, T., Warren, R. A. J., and Withers, S. G., β-Mannosynthase: synthesis of β-mannosides with a mutant β-mannosidase. Angew. Chem. Int. Ed. Engl., 40, 417–420 (2001).
  • 24) Zechel, D. L., Reid, S. P., Stoll, D., Nashiru, O., Warren, R. A., and Withers, S. G., Mechanism, mutagenesis, and chemical rescue of a β-mannosidase from Cellulomonas fimi. Biochemistry, 42, 7195–7204 (2003).
  • 25) Kim, Y. W., Lee, S. S., Warren, R. A., and Withers, S. G., Directed evolution of a glycosynthase from Agrobacterium sp. increases its catalytic activity dramatically and expands its substrate repertoire. J. Biol. Chem., 279, 42787–42793 (2004).
  • 26) Trincone, A., Perugino, G., Rossi, M., and Moracci, M., A novel thermophilic glycosynthase that effects branching glycosylation. Bioorg. Med. Chem. Lett., 10, 365–368 (2000).
  • 27) Lin, H., Tao, H., and Cornish, V. W., Directed evolution of a glycosynthase via chemical complementation. J. Am. Chem. Soc., 126, 15051–15059 (2004).
  • 28) Hrmova, M., Imai, T., Rutten, S. J., Fairweather, J. K., Pelosi, L., Bulone, V., Driguez, H., and Fincher, G. B., Mutated barley (1,3)-β-D-glucan endohydrolases synthesize crystalline (1,3)-β-D-glucans. J. Biol. Chem., 277, 30102–30111 (2002).
  • 29) Malet, C., and Planas, A., From β-glucanase to β-glucansynthase: glycosyl transfer to α-glycosyl fluorides catalyzed by a mutant endoglucanase lacking its catalytic nucleophile. FEBS Lett., 440, 208–212 (1998).
  • 30) Faijes, M., Perez, X., Perez, O., and Planas, A., Glycosynthase activity of Bacillus licheniformis 1,3-1,4-β-glucanase mutants: specificity, kinetics, and mechanism. Biochemistry, 42, 13304–13318 (2003).
  • 31) Ducros, V. M., Tarling, C. A., Zechel, D. L., Brzozowski, A. M., Frandsen, T. P., von Ossowski, I., Schulein, M., Withers, S. G., and Davies, G. J., Anatomy of glycosynthesis: structure and kinetics of the Humicola insolens Cel7B E197A and E197S glycosynthase mutants. Chem. Biol., 10, 619–628 (2003).
  • 32) Boyer, V., Fort, S., Frandsen, T. P., Schulein, M., Cottaz, S., and Driguez, H., Chemoenzymatic synthesis of a bifunctionalized cellohexaoside as a specific substrate for the sensitive assay of cellulase by fluorescence quenching. Chemistry, 8, 1389–1394 (2002).
  • 33) Fort, S., Boyer, V., Greffe, L., Davies, G. J., Moroz, O., Christiansen, L., Schulein, M., Cottaz, S., and Driguez, H., Highly efficient synthesis of β(1,4)-oligo- and -polysaccharides using a mutant cellulase. J. Am. Chem. Soc., 122, 5429–5437 (2000).
  • 34) Okuyama, M., Mori, H., Watanabe, K., Kimura, A., and Chiba, S., α-Glucosidase mutant catalyzes “α-glycosynthase”-type reaction. Biosci. Biotechnol. Biochem., 66, 928–933 (2002).
  • 35) Honda, Y., and Kitaoka, M., The first glycosynthase derived from an inverting glycoside hydrolase. J. Biol. Chem., 281, 1426–1431 (2006).
  • 36) Zhengqiang, J., Kobayashi, A., Ahsan, M. M., Lite, L., Kitaoka, M., and Hayashi, K., Characterization of a thermostable family 10 endo-xylanase (xynB) from Thermotoga maritima that cleaves p-nitrophenyl-β-D-xyloside. J. Biosci. Bioeng., 92, 423–428 (2001).
  • 37) Fukumura, M., Sakka, K., Shimada, K., and Ohmiya, K., Nucleotide sequence of the Clostridium stercorarium xynB gene encoding an extremely thermostable xylanase, and characterization of the translated product. Biosci. Biotechnol. Biochem., 59, 40–46 (1995).
  • 38) Nishimoto, M., Honda, Y., Kitaoka, M., and Hayashi, K., A kinetic study on pH-activity relationship of XynA from alkaliphilic Bacillus halodurans C125 using aryl-xylobiosides. J. Biosci. Bioeng., 93, 428–430 (2002).
  • 39) Gilkes, N. R., Warren, R. A., Miller, R. C., Jr., and Kilburn, D. G., Precise excision of the cellulose binding domains from two Cellulomonas fimi cellulases by a homologous protease and the effect on catalysis. J. Biol. Chem., 263, 10401–10407 (1988).
  • 40) Hayashi, M., Hashimoto, M., and Noyori, R., Simple synthesis of glycosyl fluorides. Chem. Lett., 1747–1750 (1984).
  • 41) Yokoyama, M., Methods of synthesis of glycosyl fluorides. Carbohydr. Res., 327, 5–14 (2000).
  • 42) Nishimoto, M., Fushinobu, S., Miyanaga, A., Wakagi, T., Shoun, H., Sakka, K., Ohmiya, K., Nirasawa, S., Kitaoka, M., and Hayashi, K., Crystallization and preliminary X-ray analysis of xylanase B from Clostridium stercorarium. Acta Crystallogr. D Biol. Crystallogr., 60, 342–343 (2004).
  • 43) Honda, Y., Kitaoka, M., Sakka, K., Ohmiya, K., and Hayashi, K., An investigation of the pH-activity relationship of Cex, a family 10 xylanase from Cellulomonas fimi: xylan inhibition and the influence of nitro-substituted aryl-β-D-xylobiosides on xylanase activity. J. Biosci. Bioeng., 93, 313–317 (2002).
  • 44) Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 224, 680–685 (1970).
  • 45) Kaneko, S., Ichinose, H., Fujimoto, Z., Kuno, A., Yura, K., Go, M., Mizuno, H., Kusakabe, I., and Kobayashi, H., Structure and function of a family 10 β-xylanase chimera of Streptomyces olivaceoviridis E-86 FXYN and Cellulomonas fimi Cex. J. Biol. Chem., 279, 26619–26626 (2004).
  • 46) Kitaoka, M., Haga, K., Kashiwagi, Y., Sasaki, T., Taniguchi, H., and Kusakabe, I., Kinetic studies on p-nitrophenyl-cellobioside hydrolyzing xylanase from Cellvibrio gilvus. Biosci. Biotechnol. Biochem., 57, 1987–1989 (1993).
  • 47) Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G., The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res., 25, 4876–4882 (1997).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.