265
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis of Naturally Derived Bioactive Compounds of Agricultural Interest

Pages 317-324 | Published online: 22 May 2014

  • 1) Wolf, F. A., and Foster, A. C., Bacterial leaf spot of tobacco. Science, 46, 361–362 (1917).
  • 2) Woolley, D. W., Shaffner, G., and Braun, A. C., Studies on the structure of the phytopathogenic toxin of Pseudomonas tabaci. J. Biol. Chem., 215, 485–493 (1955) and references cited therein.
  • 3) Stewart, W. W., Isolation and proof of structure of wildfire toxin. Nature, 229, 174–178 (1971).
  • 4) Uchytil, T. F., and Durbin, R. D., Hydrolysis of tabtoxins by plant and bacterial enzymes. Experientia, 36, 301–302 (1980).
  • 5) Taylor, P. A., Schnoes, H. K., and Durbin, R. D., Characterization of chlorosis-inducing toxins from a plant pathogenic Pseudomonas sp. Biochim. Biophys. Acta, 286, 107–117 (1972).
  • 6) Durbin, R. D., Uchytil, T. F., Steele, J. A., and Ribeiro, R. de L. D., Tabtoxinine-β-lactam from Pseudomonas tabaci. Phytochemistry, 17, 147 (1978).
  • 7) Langston-Unkefer, P. J., Robinson, A. C., Knight, T. J., and Durbin, R. D., Inactivation of pea seed glutamine synthetase by the toxin, tabtoxinine-β-lactam. J. Biol. Chem., 262, 1608–1613 (1987) and references cited therein.
  • 8) He, H., Ding, Y., Bartlam, M., Sun, F., Le, Y., Qin, X., Tang, H., Zhang, R., Joachimiak, A., Liu, J., Zhao, N., and Rao, Z., Crystal structure of tabtoxin resistance protein complexed with acetyl coenzyme A reveals the mechanism for β-lactam acetylation. J. Mol. Biol., 325, 1019–1030 (2003) and references cited therein.
  • 9) Baldwin, J. E., Otsuka, M., and Wallace, P. M., Synthetic studies of tabtoxin. Synthesis of a naturally occurring inhibitor of glutamine synthetase, tabtoxinine-β-lactam, and analogues. Tetrahedron, 42, 3097–3110 (1986).
  • 10) Baldwin, J. E., Bailey, P. D., Gallacher, G., Otsuka, M., Singleton, K. A., and Wallace, P. M., Stereospecific synthesis of tabtoxin. Tetrahedron, 40, 3695–3707 (1984).
  • 11) Doll, R. E., Li, C.-S., Novelli, R., Kruse, L. I., and Eggleston, D., Enantioselective synthesis of (−)-tabtoxinine β-lactam. J. Org. Chem., 57, 128–132 (1992).
  • 12) Adlington, R. M., Baldwin, J. E., Basak, A., and Kozyrod, R. P., Applications of radical addition reactions to the synthesis of a C-glucoside and a functionalised amino-acid. J. Chem. Soc., Chem. Commun., 944–945 (1983).
  • 13) Baldwin, J. E., Adlington, R. M., Birch, D. J., Crawford, J. A., and Sweeney, J. B., Radical reactions in synthesis: carbon–carbon bond formation from 2-substituted allyl trialkyl stannanes. J. Chem. Soc., Chem. Commun., 1339–1340 (1986).
  • 14) Li, G., Chang, H.-T., and Sharpless, K. B., Catalytic asymmetric aminohydroxylation (AA) of olefins. Angew. Chem. Int. Ed. Engl., 35, 451–454 (1996).
  • 15) Kolb, H. C., Van Nioeuwenhze, M. S., and Sharpless, K. B., Catalytic asymmetric dihydroxylation. Chem. Rev., 94, 2483–2547 (1994).
  • 16) Knochel, P., and Singer, R. D., Preparation and reactions of polyfunctional organozinc reagents in organic synthesis. Chem. Rev., 93, 2117–2188 (1993).
  • 17) Miller, M. J., Mattingly, P. G., Morrison, M. A., and Kerwin Jr., J. F., Synthesis of β-lactams from substituted hydroxamic acids. J. Am. Chem. Soc., 102, 7026–7032 (1980).
  • 18) Kiyota, H., Takai, T., Saitoh, M., Nakayama, O., Oritani, T., and Kuwahara, S., Facile synthesis of tabtoxinine-β-lactam and its (3′R)-isomer. Tetrahedron Lett., 45, 8191–8194 (1994).
  • 19) Umetsu, N., Kaji, J., and Tamari, K., Investigation on the toxin production by several blast fungus strains and isolation of tenuazonic acid as a novel toxin. Agric. Biol. Chem., 36, 859–866 (1972) and references cited therein.
  • 20) Iwasaki, S., Nozoe, S., Okuda, S., Sato, Z., and Kozawa, T., Isolation and structural elucidation of a phytotoxic substance produced by Pyricularia oryzae Cavara. Tetrahedron Lett., 3977–3980 (1969).
  • 21) Nukina, M., Sassa, T., Ikeda, M., Umezawa, T., and Tasaki, H., Pyriculariol, a new phytotoxic metabolite of Pyricularia oryzae Cavara. Agric. Biol. Chem., 45, 2161–2162 (1981).
  • 22) Suzuki, M., Sugiyama, T., Watanabe, M., Murayama, T., and Yamashita, K., Synthesis and absolute configuration of pyriculol. Agric. Biol. Chem., 51, 1121–1127 (1987).
  • 23) Kim, J.-C., Min, J.-Y., Kim, H.-T., Cho, K.-Y., and Yu, S.-H., Pyricuol, a new phytotoxin from Magnaporthe grisea. Biosci. Biotechnol. Biochem., 62, 173–174 (1998).
  • 24) Still, W. C., and Mitra, A., Stereoselective synthesis of Z-trisubstituted olefins via [2,3]-sigmatropic rearrangement. Preference for a pseudoaxially substituted transition state. J. Am. Chem. Soc., 100, 1927–1928 (1987).
  • 25) Kiyota, H., Ueda, R., Oritani, T., and Kuwahara, S., First synthesis of (±)-pyricuol, a plant pathogen isolated from rice blast disease fungus Magnaporthe grisea. Synlett, 219–220 (2003).
  • 26) Chackalamannil, S., Davies, R. J., Wang, Y., Asberom, T., Doller, D., Wong, J., and Leone, D., Total synthesis of (+)-himbacine and (+)-himbeline. J. Org. Chem., 64, 1932–1940 (1999).
  • 27) Nakamura, Y., Kiyota, H., Ueda, R., and Kuwahara, S., Synthesis to determine the absolute configuration of (−)-pyricuol, a phytotoxin isolated from rice blast disease fungus, Magnaporthe grisea. Tetrahedron Lett., 46, 7107–7109 (2005).
  • 28) Sonoda, T., Osada, H., Uzawa, J., and Isono, K., Actiketal, a new member of the glutarimide antibiotics. J. Antibiot., 44, 160–163 (1991).
  • 29) Highet, R. J., and Prelog, V., Stoffwechselprodukte von Actinomyceten 18. Actiphenol. Helv. Chim. Acta, 42, 1523–1526 (1959).
  • 30) Stoermer, R., and Göhl, F., Synthese des Cumarans (Hydrocumarons) und seiner Homologen. Chem. Ber., 36, 2873–2877 (1903).
  • 31) Kasahara, A., Izumi, T., Yodono, M., Saito, R., Takeda, T., and Sugawara, T., Arylation and vinylation reactions of benzo[b]furan via organopalladium intermediates. Bull. Chem. Soc. Jpn., 46, 1220–1225 (1973).
  • 32) Matsuda, F., Kawasaki, M., and Terashima, S., Efficient synthesis and antitumor activity of an enantiomeric pair of the sesbanimide AB-ring system. Tetrahedron Lett., 26, 4639–4642 (1985).
  • 33) Ishii, H., Ishikawa, T., Takeda, S., Ueki, S., and Suzuki, M., Cesium fluoride-mediated Claisen rearrangement of aryl propargyl ether. Exclusive formation of 2-methylarylfran and its availability as a masked salicylaldehyde. Chem. Pharm. Bull., 40, 1148–1153 (1992).
  • 34) Kiyota, H., Shimizu, Y., and Oritani, T., Synthesis of actiketal, a glutarimide antibiotic. Tetrahedron Lett., 41, 5887–5890 (2000).
  • 35) Kiyota, H., Shimizu, Y., and Oritani, T., Synthesis of actiketal, an unique benzofuran glutarimide antibiotic from Streptomyces pulveraceus subsp. epiderstagenes. J. Pesticide Sci., 25, 93–95 (2001).
  • 36) Johnson, D. C., and Pinedo, C., Gizzard erosion and ulceration in Peru broilers. Avian Diseases, 15, 835–837 (1971).
  • 37) Okazaki, T., Noguchi, T., Igarashi, K., Sakagami, Y., Seto, H., Mori, K., Naito, H., Masumura, T., and Sugahara, M., Gizzerosine, a new toxic substance in fish meal, causes severe gizzard erosion in chicks. Agric. Biol. Chem., 47, 2949–2952 (1983).
  • 38) Mori, K., Sugai, T., Maeda, Y., Okazaki, T., Noguchi, T., and Naito, H., Synthesis of the racemic and optically active forms of gizzerosine, the inducer of gizzard erosion in chicks. Tetrahedron, 41, 5307–5311 (1985).
  • 39) Dunn, M. J., Jackson, R. F. W., Pietruszka, J., and Turner, D., Synthesis of enantiomerically pure unsaturated α-amino acids using serine-derived zinc/copper reagents. J. Org. Chem., 60, 2210–2215 (1995).
  • 40) Lombard, M., Girotti, R., Morganti, S., and Trombini, C., A new protocol for the acetoxyallylation of aldehydes mediated by indium in THF. Org. Lett., 3, 2981–2983 (2001).
  • 41) Shimasaki, Y., Kiyota, H., Sato, M., and Kuwahara, S., Facile synthesis of (S)-gizzerosine, a potent inducer of gizzard erosion in chicks, using successive zinc-mediated and palladium-catalyzed coupling reactions. Synthesis, 3191–3192 (2005).
  • 42) McClintock, J. B., and Janssen, J., Pteropod abduction as a chemical defense in a pelagic antarctic amphipod. Nature, 346, 462–464 (1990).
  • 43) Bryan, P. J., Yoshida, W. Y., McClintock, J. B., and Baker, B. J., Ecological role for pteroenone, a novel antifeedant from the conspicuous antarctic pteropod Clione antarctica (Gymnosomata: Gastropoda). Marine Biology, 122, 271–277 (1995).
  • 44) Yoshida, W. Y., Bryan, P. J., Baker, B. J., and McClintock, J. B., Pteroenone: a defensive metabolite of the abducted antarctic pteropod Clione antarctica. J. Org. Chem., 60, 780–782 (1995).
  • 45) Evans, D. A., Tedrow, J. S., Shaw, J. T., and Downey, C. W., Diastereoselective magnesium halide-catalyzed anti-aldol reactions of chiral N-acyloxazolidinones. J. Am. Chem. Soc., 124, 392–393 (2002).
  • 46) Mori, K., and Amaike, M., Pheromone synthesis. Part 166. Synthesis of (2E,5R,6E,8E)-5,7-dimethyldeca-2,6,8-trien-4-one, the major component of the sex pheromone of the Israeli pine blast scale and its antipode. J. Chem. Soc., Perkin Trans. 1, 2727–2733 (1994).
  • 47) Nakamura, Y., Kiyota, H., Baker, B. J., and Kuwahara, S., First synthesis of (+)-pteroenone: a defensive metabolite of the abducted antarctic pteropod Clione antarctica. Synlett, 635–636 (2005).
  • 48) Nakamura, Y., Kiyota, H., and Kuwahara, S., Synthesis of pteroenone and its stereoisomer, a marine antifeedant isolated from Clione antarctica. Abstracts of Papers: Annual Meeting of Japan Society for Bioscience, Biotechnology, and Agrochemistry, Sapporo, March 28–30, p. 188 (2005).
  • 49) González, N., Rodríguez, J., and Jiménez, C., Didemniserinolipids A–C, unprecedented serinolipids from the tunicate Didemnum sp. J. Org. Chem., 64, 5705–5707 (1999).
  • 50) Dixon, D. J., Foster, A. C., and Ley, S. V., A short and efficient stereoselective synthesis of the polyhydroxylated macrolactone (+)-aspicilin. Org. Lett., 2, 123–125 (2000).
  • 51) Lidströme, P., Tierney, J., Wathey, B., and Westman, J., Microwave assisted organic synthesis — a review. Tetrahedron, 57, 9225–9283 (2001).
  • 52) Kiyota, H., Dixon, D. J., Luscombe, C. K., Hettstedt, S., and Ley, S. V., Syntheses and structure revision of didemniserinolipid B, a marine natural product from a tunicate, Didemnum sp. Org. Lett., 4, 3223–3226 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.