184
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Cloning and Comparison of Third β-Glucoside Utilization (bglEFIA) Operon with Two Operons of Pectobacterium carotovorum subsp. carotovorum LY34

, , , , , , , , & show all
Pages 798-807 | Received 28 Jul 2005, Accepted 07 Dec 2005, Published online: 22 May 2014

  • 1) Beguin, P., Molecular biology of cellulose degradation. Annu. Rev. Microbiol., 44, 219–248 (1990).
  • 2) Spiridonov, N. A., and Wilson, D. B., Cloning and biochemical characterization of BglC, a β-glucosidase from the cellulolytic actinomycete Thermobifida fusca. Curr. Microbiol., 42, 295–301 (2001).
  • 3) Helfert, C., Gotsche, S., and Dahl, M. K., Cleavage of trehalose-phosphate in Bacillus subtilis is catalyzed by a phospho-α-(1,1)-glucosidase encoded by the treA gene. Mol. Microbiol., 16, 111–120 (1995).
  • 4) Park, S. R., Cho, S. J., Kim, M. K., Ryu, S. K., Lim, W. J., An, C. L., Hong, S. Y., Kim, H., and Yun, H. D., Activity enhancement of Cel5Z from Pectobacterium chrysanthemi PY35 by removing C-terminal region. Biochem. Biophys. Res. Commun., 291, 425–430 (2002).
  • 5) Raghunand, T. R., and Mahadevan, S., The β-glucoside genes of Klebsiella aerogenes: conservation and divergence in relation to the cryptic bgl genes of Escherichia coli. FEMS Microbiol. Lett., 223, 267–274 (2003).
  • 6) Wong, W. K. R., Ali, A., Chan, W. K., Ho, V., and Lee, N. T. K., The cloning, expression and characterization of a cellobiase gene encoding a secretary enzyme from Cellulomonas biazotea. Gene, 207, 79–86 (1998).
  • 7) Greenberg, D. B., Stulke, J., and Saier, M. H. Jr., Domain analysis of transcriptional regulators bearing PTS regulatory domains. Res. Microbiol., 153, 519–526 (2002).
  • 8) Hu, K. Y., and Saier, M. H. Jr., Phylogeny of phosphoryl transfer proteins of the phosphoenolpyruvate-dependent sugar-transporting phosphotransferase system. Res. Microbiol., 153, 405–415 (2002).
  • 9) Kotrba, P., Inui, M., and Yukawa, H., A single V317A or V317M substitution in enzyme II of a newly identified β-glucoside phosphotransferase and utilization system of Corynebacterium glutamicum R extends its specificity towards cellobiose. Microbiology, 149, 1569–1580 (2003).
  • 10) Cote, C. K., and Honeyman, A. L., The LicT protein acts as both a positive and a negative regulator of loci within the bgl regulon of Streptococcus mutans. Microbiology, 149, 1333–1340 (2003).
  • 11) Tobisch, S., Stulke, J., and Hecker, M., Regulation of the lic operon of Bacillus subtilis and characterization of potential phosphorylation sites of the LicR regulator protein by site-directed mutagenesis. J. Bacteriol., 181, 4995–5003 (1999).
  • 12) Warner, J. B., and Lolkema, J. S., A Crh-specific function in carbon catabolite repression in Bacilus subtilis. FEMS Microbiol. Lett., 220, 277–280 (2003).
  • 13) Saier, M. H. Jr., Families of transmembrane sugar transport proteins. Mol. Microbiol., 35, 699–710 (2000).
  • 14) Saier, M. H. Jr., and Reizer, J., Proposed uniform nomenclature for the proteins and the protein domains of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. J. Bacteriol., 174, 1433–1438 (1992).
  • 15) Park, Y. W., Lim, S. T., and Yun, H. D., Cloning and characterization of a CMCase gene, celB, of Erwinia carotovra subsp. carotovora LY34 and its comparison to celA. Mol. Cells, 8, 280–285 (1998).
  • 16) An, C. L., Lim, W. J., Hong, S. Y., Kim, E. J., Shin, E. C., Kim, M. K., Lee, J. Y., Park, S. R., Woo, J. G., Lim, Y. P., and Yun, H. D., Analysis of bgl operon structure and characterization of β-glucosidase from Pectobacterium carotovorum subsp. carotovorum LY34. Biosci. Biotechnol. Biochem., 68, 2270–2278 (2004).
  • 17) An, C. L., Lim, W. J., Hong, S. Y., Shin, E. C., Kim, M. K., Lee, J. Y., Park, S. R., Woo, J. G., Lim, Y. P., and Yun, H. D., Structural and biochemical analysis of the asc operon encoding 6-phospho-β-glucosidase in Pectobacterium carotovorum subsp. carotovorum LY34. Res. Microbiol., 156, 145–153 (2005).
  • 18) Sambrook, J., and Russell, D. W., Molecular cloning, a laboratory manual, third ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2001).
  • 19) Wild, J., Hradecna, Z., and Szybalski, W., International symposium on molecular biology of bacterial plasmids. Plasmid, 45, 142 (2001).
  • 20) Iwashita, K., Todoroki, K., Himura, H., Shimoi, H., and Ito, K., Purification and characterization of extracellular and cell wall bound β-glucosidases from Aspergillus kawachii. Biosci. Biotechnol. Biochem., 62, 1938–1946 (1998).
  • 21) Nagatomo, H., Matsushita, Y., Sugamoto, K., and Matsui, T., Preparation and properties of gelatin-immobilized β-glucosidase from Pyrococcus furiosus. Biosci. Biotechnol. Biochem., 69, 128–136 (2005).
  • 22) Kawai, R., Yoshida, M., Tani, T., Igarashi, K., Ohira, T., Nagasawa, H., and Samejima, M., Production and characterization of recombinant Phanerochaete chrysosporium β-glucosidase in the methylotropic yeast Pichia pastoris. Biosci. Biotechnol. Biochem., 67, 1–7 (2003).
  • 23) Bata, J., and Gerbi, C., Glycoside hydrolase production by an anaerobic rumen fungus Caecomyces communis. Res. Microbiol., 148, 263–269 (1997).
  • 24) Svasti, J., Phongsak, T., and Sarnthima, R., Transglucosylation of tertiary alcohols using cassava β-glucosidase. Biochem. Biophys. Res. Commun., 305, 470–475 (2003).
  • 25) Marasco, R., Muscariello, L., Varcamonti, M., De Felice, M., and Sacco, M., Expression of the bglH gene of Lactobasillus plantarum is controlled by carbon catabolite repression. J. Bacteriol., 180, 3400–3404 (1998).
  • 26) Schaefler, S., Inducible system for the utilization of β-glucosides in Escherichia coli. I. Active transport and utilization of β-glucosides. J. Bacteriol., 93, 254–263 (1967).
  • 27) Marques, A. R., Coutinho, P. M., Videira, P., Fialho, A. M., and Sa-Correia, I., Sphingomonas paucimobilis beta-glucosidase Bgl1: a member of a new bacterial subfamily in glycoside hydrolase family 1. Biochem. J., 370, 793–804 (2003).
  • 28) Thompson, J., Robrish, S. A., Bouma, C. L., Freedberg, D. I., and Folk, J. E., Phospho-β-glucosidase from Fusobacterium mortiferum: purification, cloning, and inactivation by 6-phosphoglucono-δ-lactone. J. Bacteriol., 179, 1636–1645 (1997).
  • 29) Wilson, G., and Fox, C. F., The β-glucoside system of Escherichia coli. IV. Purification and properties of phospho-β-glucosidases A and B. J. Biol. Chem., 249, 5586–5598 (1974).
  • 30) Lim, W. J., Park, S. R., An, C. L., Lee, J. Y., Hong, S. Y., Shin, E. C., Kim, E. J., Kim, J. O., Kim, H., and Yun, H. D., Cloning and characterization of a thermostable intracellular α-amylase gene from the hyperthermophilic bacterium Thermotoga maritima MSB8. Res. Microbiol., 154, 681–687 (2003).
  • 31) Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248–254 (1976).
  • 32) Lai, X., Davis, F. C., Hespell, R. B., and Ingram, L. O., Cloning of cellobiose phosphoenolpyruvate-dependent phosphotransferase genes: functional expression in recombinant Escherichia coli and identification of a putative binding region for disaccharides. Appl. Environ. Microbiol., 63, 355–363 (1997).
  • 33) Litte, S., Cartwright, P., Campbell, C., Prenneta, A., McChesney, J., Moutain, A., and Robinson, M., Nucleotide sequence of a thermostable β-galactosidase from Sulfolobus solfatariacus. Nucl. Acids Res., 17, 7980 (1989).
  • 34) Parker, L. L., and Hall, B. G., A fourth Escherichia coli gene system with the potential to evolve β-glucoside utilization. Genetics, 119, 485–490 (1988).
  • 35) Withers, S. G., Warren, R. A. J., Street, I. P., Rupitz, K., Kempton, J. B., and Aebersold, R., Unequivocal demonstration of the involvement of a glutamate residue as a nucleophile in the mechanism of a “retaining” glucosidase. J. Am. Chem. Soc., 112, 5887–5889 (1990).
  • 36) Wang, Q., Trimbur, D., Graham, R., Warren, R. A. J., and Withers, S. G., Identification of the acid/base catalyst in Agrobacterium faecalis β-glucosidase by kinetic analysis of mutants. Biochemistry, 34, 14554–14562 (1995).
  • 37) Postma, P. W., Lengeler, J. W., and Jacobson, G. R., Phosphoenolpyruvate: carbohydrate phosphotransferase systems. In “Escherichia coli and Salmonella: Cellular and Molecular Biology,” eds. Neidhardt, F. C., Curtiss III, R., Ingraham, J. L., Lin, E. C. C., Low, K. B., Magasanik, B., Reznikoff, W. S., Riley, M., Schaechter, M., and Umbarger, H. E., ASM Press, Washington, DC, pp. 1149–1174 (1996).
  • 38) Paulsen, I. T., Nguyen, L., Sliwinski, M. K., Rabus, R., and Saier, M. H. Jr., Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes. J. Mol. Biol., 301, 75–100 (2000).
  • 39) Kotrba, P., Inui, M., and Yukawa, H., Bacterial phosphotransferase system (PTS) in carbohydrate uptake and control of carbon metabolism. J. Biosci. Bioeng., 92, 502–517 (2001).
  • 40) Klein, P., Kanehisa, M., and Delisi, C., The detection and classification of membrane spanning proteins. Biochim. Blophys. Acta, 815, 468–476 (1985).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.