165
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

Mutational Study on αGln90 of Fe-Type Nitrile Hydratase from Rhodococcus sp. N771

, , , , , , , , & show all
Pages 881-889 | Received 09 Sep 2005, Accepted 13 Nov 2005, Published online: 22 May 2014

  • 1) Asano, Y., Tani, Y., and Yamada, H., A new enzyme “nitrile hydratase” which degrades acetonitrile in combination with amidase. Agric. Biol. Chem., 44, 2251 (1980).
  • 2) Asano, Y., Yasuda, T., Tani, Y., and Yamada, H., A new enzymatic method of acrylamide production. Agric. Biol. Chem., 46, 1183–1189 (1982).
  • 3) Kobayashi, M., Nagasawa, T., and Yamada, H., Enzymatic synthesis of acrylamide: a success story not yet over. Trends Biotechnol., 10, 402–408 (1992).
  • 4) Yamada, H., and Kobayashi, M., Nitrile hydratase and its application to industrial production of acrylamide. Biosci. Biotechnol. Biochem., 60, 1391–1400 (1996).
  • 5) Kobayashi, M., and Shimizu, S., Metalloenzyme nitrile hydratase: structure, regulation, and application to biotechnology. Nat. Biotechnol., 16, 733–736 (1998).
  • 6) Asano, Y., and Kato, Y., Z-phenylacetaldoxime degradation by a novel aldoxime dehydratase from Bacillus sp. strain OxB-1. FEMS Microbiol. Lett., 158, 185–190 (1998).
  • 7) Asano, Y., Overview of screening for new microbial catalysts and their uses in organic synthesis: selection and optimization of biocatalyst. J. Biotechnol., 94, 65–72 (2002).
  • 8) Kato, Y., Nakamura, K., Sakiyama, H., Mayhew, S. G., and Asano, Y., A novel-heme containing lyase, phenylacetaldoxime dehydratase from Bacillus sp. strain OxB-1: purification, characterization, and molecular cloning of the gene. Biochemistry, 39, 800–809 (2000).
  • 9) Xie, S.-X., Kato, Y., Komeda, H., Yoshida, S., and Asano, Y., A novel gene cluster responsible for alkylaldoxime metabolism coexisting with nitrile hydratase and amidase in Rhodococcus globerulus A-4. Biochemistry, 42, 12056–12066 (2003).
  • 10) Kato, Y., Yoshida, S., Xie, S.-X., and Asano, Y., Aldoxime dehydratase co-existing nitrile hydratase and amidase in iron type nitrile hydratase producer Rhodococcus sp. N-771. J. Biosci. Bioeng., 97, 250–259 (2004).
  • 11) Oinuma, K., Hashimoto, Y., Konishi, K., Goda, M., Noguchi, T., Higashibata, H., and Kobayashi, M., Novel aldoxime dehydratase involved in carbon-nitrogen triple bond synthesis of Pseudomonas chlororaphis B23. Sequencing, gene expression, purification, and characterization. J. Biol. Chem., 41, 29600–29608 (2003).
  • 12) Kobayashi, K., Yoshioka, S., Kato, Y., Asano, Y., and Aono, Y., Regulation of aldoxime dehydratase activity by redox-dependent change in the coordination structure of the aldoxime-heme complex. J. Biol. Chem., 280, 5486–5490 (2005).
  • 13) Hashimoto, Y., Hosaka, H., Oinuma, K., Goda, M., Higashibara, H., and Kobayashi, M., Nitrile pathway involving Acyl-CoA synthetase: overall metabolic gene organization and purification and characterization of the enzyme. J. Biol. Chem., 280, 8660–8667 (2005).
  • 14) Sugiura, Y., Kuwahara, J., Nagasawa, Y., and Yamada, Y., Significant interaction between low-spin iron(III) site and pyrroloquinoline quinone in active center of nitrile hydratase. Biochem. Biophys. Res. Commun., 154, 522–528 (1998).
  • 15) Nakasako, M., Odaka, M., Yohda, M., Dohmae, N., Takio, K., Kamiya, N., and Endo, I., Tertiary and quaternary structures of photoreactive Fe-type nitrile hydratase from Rhodococcus sp. N-771: roles of hydration water molecules in stabilizing the structures and the structural origin of the substrate specificity of the enzyme. Biochemistry, 38, 9887–9898 (1999).
  • 16) Nagasawa, T., Takeuchi, K., and Yamada, H., Occurrence of a cobalt-induced and cobalt-containing nitrile hydratase in Rhodococcus rhodochrous J1. Biochem. Biophys. Res. Commun., 155, 1008–1016 (1998).
  • 17) Ikehata, O., Nishiyama, M., Horinouchi, S., and Beppu, T., Primary structure of nitrile hydratase deduced from the nucleotide sequence of a Rhodococcus species and its expression in Escherichia coli. Eur. J. Biochem., 181, 563–570 (1989).
  • 18) Nishiyama, M., Horinouchi, S., Kobayashi, M., Nagasawa, T., Yamada, H., and Beppu, T., Cloning and characterization of genes responsible for metabolism of nitrile compounds from Pseudomonas chlororaphis B23. J. Bacteriol., 173, 2465–2472 (1991).
  • 19) Kobayashi, M., Nishiyama, M., Nagasawa, T., Horinouchi, S., Beppu, T., and Yamada, H., Cloning, nucleotide sequence and expression in Escherichia coli of two cobalt-containing nitrile hydratase genes from Rhodococcus rhodochrous J1. Biochim. Biophys. Acta, 1129, 23–33 (1991).
  • 20) Mayaux, J. F., Cerbelaud, E., Soubrier, F., Yeh, P., Blanche, F., and Petre, D., Purification, cloning, and primary structure of a new enantiomer-selective amidase from a Rhodococcus strain: structural evidence for a conserved genetic coupling with nitrile hydratase. J. Bacteriol., 173, 6694–6704 (1991).
  • 21) Duran, R., Nishiyama, M., Horinouchi, S., and Beppu, T., Characterization of nitrile hydratase genes cloned by DNA screening from Rhodococcus erythropolis. Biosci. Biotechnol. Biochem., 57, 1323–1328 (1993).
  • 22) Katayama, Y., Matsushita, Y., Kaneko, M., Kondo, M., Mizuno, T., and Nyunoya, H., Cloning of genes coding for the three subunits of thiocyanate hydrolase of Thiobacillus thioparus THI 115 and their evolutionary relationships to nitrile hydratase. J. Bacteriol., 180, 2583–2589 (1998).
  • 23) Hashimoto, Y., Nishiyama, M., Horinouchi, S., and Beppu, T., Nitrile hydratase gene from Rhodococcus sp. N-774 requirement for its downstream region for efficient expression. Biosci. Biotechnol. Biochem., 58, 1859–1865 (1994).
  • 24) Nojiri, M., Yohda, M., Odaka, M., Matsushita, Y., Tsujimura, M., Yoshida, T., Dohmae, N., Takio, K., and Endo, I., Functional expression of nitrile hydratase in Escherichia coli: requirement of a nitrile hydratase activator and post-translational modification of a ligand cysteine. J. Biochem. (Tokyo), 125, 696–704 (1999).
  • 25) Stevens, J. M., Rao Saroja, N., Jaouen, M., Belghazi, M., Schmitter, J. M., Mansuy, D., Artaud, I., and Sari, M. A., Chaperone-assisted expression, purification, and characterization of recombinant nitrile hydratase NI1 from Comamonas testosteroni. Protein Expr. Purif., 29, 70–76 (2003).
  • 26) Lu, J., Zheng, Y., Yamagishi, H., Odaka, M., Tsujimura, M., Maeda, M., and Endo, I., Motif CXCC in nitrile hydratase activator is critical for NHase biogenesis in vivo. FEBS Lett., 553, 391–396 (2003).
  • 27) Nagamune, T., Kurata, H., Hirata, M., Honda, J., Koike, H., Ikeuchi, M., Inoue, Y., Hirata, A., and Endo, I., Purification of inactivated photoresponsive nitrile hydratase. Biochem. Biophys. Res. Commun., 168, 437–442 (1990).
  • 28) Popescu, V. C., Munck, E., Fox, B. G., Sanakis, Y., Cummings, J. G., Turner, I. M., Jr., and Nelson, M. J., Mossbauer and EPR studies of the photoactivation of nitrile hydratase. Biochemistry, 40, 7984–7991 (2001).
  • 29) Noguchi, T., Honda, J., Nagamune, T., Sasabe, H., Inoue, Y., and Endo, I., Photosensitive nitrile hydratase intrinsically possesses nitric oxide bound to the non-heme iron center: evidence by Fourier transform infrared spectroscopy. FEBS Lett., 358, 9–12 (1995).
  • 30) Odaka, M., Fujii, K., Hoshino, M., Noguchi, T., Tsujimura, M., Nagashima, S., Yohda, M., Nagamune, T., Inoue, Y., and Endo, I., Activity regulation of photoreactive nitrile hydratase by nitric oxide. J. Am. Chem. Soc., 119, 3785–3791 (1997).
  • 31) Huang, W., Jia, J., Cummings, J., Nelson, M., Schneider, G., and Lindqvist, Y., Crystal structure of nitrile hydratase reveals a novel iron centre in a novel fold. Structure, 5, 691–699 (1997).
  • 32) Nagashima, S., Nakasako, M., Dohmae, N., Tsujimura, M., Takio, K., Odaka, M., Yohda, M., Kamiya, N., and Endo, I., Novel non-heme iron center of nitrile hydratase with a claw setting of oxygen atoms. Nat. Struct. Biol., 5, 347–351 (1998).
  • 33) Miyanaga, A., Fushinobu, S., Ito, K., and Wakagi, T., Crystal structure of cobalt-containing nitrile hydratase. Biochem. Biophys. Res. Commun., 288, 1169–1174 (2001).
  • 34) Hourai, S., Miki, M., Takashima, Y., Mitsuda, S., and Yanagi, K., Crystal structure of nitrile hydratase from a thermophilic Bacillus smithii. Biochem. Biophys. Res. Commun., 312, 340–345 (2003).
  • 35) Miyanaga, A., Fushinobu, S., Ito, K., Shoun, H., and Wakagi, T., Mutational and structural analysis of cobalt-containing nitrile hydratase on substrate and metal binding. Eur. J. Biochem., 271, 429–438 (2004).
  • 36) Tsujimura, M., Dohmae, N., Odaka, M., Chijimatsu, M., Takio, K., Yohda, M., Hoshino, M., Nagashima, S., and Endo, I., Structure of the photoreactive iron center of the nitrile hydratase from Rhodococcus sp. N-771: evidence of a novel post-translational modification in the cysteine ligand. J. Biol. Chem., 272, 29454–29459 (1997).
  • 37) Stevens, J. M., Belghazi, M., Jaouen, M., Bonnet, D., Schmitter, J. M., Mansuy, D., Sari, M. A., and Artaud, I., Post-translational modification of Rhodococcus R312 and Comamonas NI1 nitrile hydratases. J. Mass. Spectrom., 38, 955–961 (2003).
  • 38) Claiborne, A., Mallett, T. C., Yeh, J. I., Luba, J., and Parsonage, D., Structural, redox, and mechanistic parameters for cysteine-sulfenic acid function in catalysis and regulation. Adv. Protein Chem., 58, 215–276 (2001).
  • 39) Poole, L. B., Karplus, P. A., and Claiborne, A., Protein sulfenic acids in redox signaling. Annu. Rev. Pharmacol. Toxicol., 44, 325–347 (2004).
  • 40) Kovacs, J. A., Cysteinate-ligated non-heme iron and non-corrinoid cobalt enzymes. Chem. Rev., 104, 825–848 (2004).
  • 41) Shearer, J., Jackson, H. L., Schweitzer, D., Rittenberg, D. K., Leavy, T. M., Kaminsky, W., Scarrow, R. C., and Kovacs, J. A., The first example of a nitrile hydratase model complex that reversibly binds nitriles. J. Am. Chem. Soc., 124, 11417–11428 (2002).
  • 42) Heinrich, L., Mary-Verla, A., Li, Y., Vassermann, J., and Chottard, J. C., Cobalt(III) complexes with carboxamido-N and sulfenato-S or sulfinato-S ligands suggest that a coordinated sulfenato-S is essential for the catalytic activity of nitrile hydratases. Eur. J. Inorg. Chem., 9, 2203–2206 (2001).
  • 43) Noveron, J. C., Olmstead, M. M., and Mascharak, P. K., A synthetic analogue of the active site of Fe-containing nitrile hydratase with carboxamido N and thiolato S as donors: synthesis, structure, and reactivities. J. Am. Chem. Soc., 123, 3247–3259 (2001).
  • 44) Piersma, S. R., Nojiri, M., Tsujimura, M., Noguchi, T., Odaka, M., Yohda, M., Inoue, Y., and Endo, I., Arginine 56 mutation in the β subunit of nitrile hydratase: importance of hydrogen bonding to the non-heme iron center. J. Inorg. Biochem., 80, 283–288 (2000).
  • 45) Endo, I., Nojiri, M., Tsujimura, M., Nakasako, M., Nagashima, S., Yohda, M., and Odaka, M., Fe-type nitrile hydratase. J. Inorg. Biochem., 83, 247–253 (2001).
  • 46) Tsujimura, M., Odaka, M., Nagashima, S., Yohda, M., and Endo, I., Photoreactive nitrile hydratase: the photoreaction site is located on the α subunit. J. Biochem. (Tokyo), 119, 407–413 (1996).
  • 47) Murakami, T., Nojiri, M., Nakayama, H., Odaka, M., Yohda, M., Dohmae, N., Takio, K., Nagamune, T., and Endo, I., Post-translational modification is essential for catalytic activity of nitrile hydratase. Protein Sci., 9, 1024–1030 (2000).
  • 48) White, A., Handler, P., Smith, E. L., Hill, R. L., and Lehman, I. R., Enzymes I. In “Principles of Biochemistry” sixth ed., McGraw-Hill, New York, pp. 196–220 (1978).
  • 49) Dixon, M., The determination of enzyme inhibitor constants. Biochem. J., 55, 170–171 (1953).
  • 50) Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248–254 (1976).
  • 51) Tsujimura, M., Odaka, M., Nakayama, H., Dohmae, N., Koshino, H., Asami, T., Hoshino, M., Takio, K., Yoshida, S., Maeda, M., and Endo, I., A novel inhibitor for Fe-type nitrile hydratase: 2-cyano-2-propyl hydroperoxide. J. Am. Chem. Soc., 125, 11532–11538 (2003).
  • 52) Adachi, S., Oguchi, T., Tanida, H., Park, S.-Y., Shimizu, H., Miyatake, H., Kamiya, N., Shiro, Y., Inoue, Y., Ueki, T., and Iizuka, T., The RIKEN structural biology beamline II (BL44B2) at the SPring-8. Nucl. Instrum. Methods Phys. Res. A, 467, 711–714 (2001).
  • 53) Otwinowski, Z., and Minor, W., Processing of X-ray diffraction data collected in oscillation mode. In “Methods in Enzymology, Macromolecular Crystallography” part A, eds. Carter, C. W., Jr., and Sweet, R. M., Academic Press, New York, pp. 307–326 (1997).
  • 54) Collaborative Computational Project No. 4, the CCP4 suite: programs for protein crystallography. Acta Crystallogr. D, 50, 760–763 (1994).
  • 55) Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J.-S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T., and Warren, G. L., Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D, 54, 905–921 (1998).
  • 56) Brunger, A. T., Free R-value: a novel statistical quantity for assessing the accuracy of crystal-structures. Nature, 355, 472–475 (1992).
  • 57) Sheldrick, G. M., Phase annealing in SHELX-90: direct methods for larger structures. Acta Crystallogr. A, 46, 467–473 (1990).
  • 58) McRee, D. E., XtalView/Xfit: a versatile program for manipulating atomic coordinate and electron density. J. Struct. Biol., 125, 156–165 (1999).
  • 59) Noguchi, T., Hoshino, M., Tsujimura, M., Odaka, M., Inoue, Y., and Endo, I., Resonance Raman evidence that photodissociation of nitric oxide from the non-heme iron center activates nitrile hydratase from Rhodococcus sp. N-771. Biochemistry, 35, 16777–16781 (1996).
  • 60) Brennan, B. A., Cummings, J. G., Chase, D. B., Turner, I. M., Jr., and Nelson, M. J., Resonance Raman spectroscopy of nitrile hydratase, a novel iron-sulfur enzyme. Biochemistry, 35, 10068–10077 (1996).
  • 61) Kopf, M. A., Bonnet, D., Artaud, I., Petre, D., and Mansuy, D., Key role of alkanoic acids on the spectral properties, activity, and active-site stability of iron-containing nitrile hydratase from Brevibacterium R312. Eur. J. Biochem., 240, 239–244 (1996).
  • 62) Hirata, A., Adachi, M., Sekine, A., Kang, Y.-N., Utsumi, S., and Mikami, B., Structural and enzymatic analysis of soybean β-amylase mutants with increased pH optimum. J. Biol. Chem., 279, 7287–7295 (2004).
  • 63) Gonzalez-Pacanowska, D., Ruiz-Perez, L. M., Carreras-Gomez, M. A., Costi, M. P., Stroud, R. M., Finer-Moore, J., and Santi, D. V., The structural roles of conserved Pro196, Pro197 and His199 in the mechanism of thymidylate synthase. Protein Eng., 16, 607–614 (2003).
  • 64) Kraulis, P., Molscript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst., 24, 946–950 (1991).
  • 65) Merrit, E. A., and Murphy, M. E. P., Raster 3D version 2.0: a program for photorealistic molecular graphics. Acta Crystallogr. D, 50, 869–873 (1994).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.