365
Views
31
CrossRef citations to date
0
Altmetric
Original Articles

Identification of AMP N1-Oxide in Royal Jelly as a Component Neurotrophic toward Cultured Rat Pheochromocytoma PC12 Cells

, , , , , & show all
Pages 897-906 | Received 13 Sep 2005, Accepted 10 Dec 2005, Published online: 22 May 2014

  • 1) Angelucci, F., Mathe, A. A., and Aloe, L., Neurotrophic factors and CNS disorders: findings in rodent models of depression and schizophrenia. Prog. Brain Res., 146, 151–165 (2004).
  • 2) Duman, R. S., Role of neurotrophic factors in the etiology and treatment of mood disorders. Neuromol. Med., 5, 11–25 (2004).
  • 3) Tuszynski, M. H., and Blesch, A., Nerve growth factor: from animal models of cholinergic neuronal degeneration to gene therapy in Alzheimer’s disease. Prog. Brain Res., 146, 441–449 (2004).
  • 4) Kamakura, M., Mitani, N., Fukuda, T., and Fukushima, M., Antifatigue effect of fresh royal jelly in mice. J. Nutr. Sci. Vitaminol. (Tokyo), 47, 394–401 (2001).
  • 5) Fujii, A., Kobayashi, S., Kuboyama, N., Furukawa, Y., Kaneko, Y., Ishihama, S., Yamamoto, H., and Tamura, T., Augmentation of wound healing by royal jelly (RJ) in streptozotocin-diabetic rats. Jpn. J. Pharmacol., 53, 331–337 (1990).
  • 6) Sver, L., Orsolic, N., Tadic, Z., Njari, B., Valpotic, I., and Basic, I., A royal jelly as a new potential immunomodulator in rats and mice. Comp. Immunol. Microbiol. Infect. Dis., 19, 31–38 (1996).
  • 7) Oka, H., Emori, Y., Kobayashi, N., Hayashi, Y., and Nomoto, K., Suppression of allergic reactions by royal jelly in association with the restoration of macrophage function and the improvement of Th1/Th2 cell responses. Int. Immunopharmacol., 1, 521–532 (2001).
  • 8) Taniguchi, Y., Kohno, K., Inoue, S., Koya-Miyata, S., Okamoto, I., Arai, N., Iwaki, K., Ikeda, M., and Kurimoto, M., Oral administration of royal jelly inhibits the development of atopic dermatitis-like skin lesions in NC/Nga mice. Int. Immunopharmacol., 3, 1313–1324 (2003).
  • 9) Tokunaga, K. H., Yoshida, C., Suzuki, K. M., Maruyama, H., Futamura, Y., Araki, Y., and Mishima, S., Antihypertensive effect of peptides from royal jelly in spontaneously hypertensive rats. Biol. Pharm. Bull., 27, 189–192 (2004).
  • 10) Greene, L. A., and Tischler, A. S., Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. USA, 73, 2424–2428 (1976).
  • 11) Chao, M. V., The p75 neurotrophin receptor. J. Neurobiol., 25, 1373–1385 (1994).
  • 12) Barbacid, M., The Trk family of neurotrophin receptors. J. Neurobiol., 25, 1386–1403 (1994).
  • 13) Kaplan, D. R., Hempstead, B. L., Martin-Zanca, D., Chao, M. V., and Parada, L. F., The trk proto-oncogene product: a signal transducing receptor for nerve growth factor. Science, 252, 554–558 (1991).
  • 14) Lin, W. H., Higgins, D., Pacheco, M., Aletta, J., Perini, S., Marcucci, K. A., and Roth, J. A., Manganese induces spreading and process outgrowth in rat pheochromocytoma (PC12) cells. J. Neurosci. Res., 34, 546–561 (1993).
  • 15) Tsai, S. S., Sun, A. Y., Kim, H. D., and Sun, G. Y., Manganese exposure to PC-12 cells alters triacylglycerol metabolism and promotes neurite outgrowth. Life Sci., 52, 1567–1575 (1993).
  • 16) Gunning, P. W., Letourneau, P. C., Landreth, G. E., and Shooter, E. M., The action of nerve growth factor and dibutyryl adenosine cyclic 3′:5′-monophosphate on rat pheochromocytoma reveals distinct stages in the mechanisms underlying neurite outgrowth. J. Neurosci., 1, 1085–1095 (1981).
  • 17) Rogers, M. V., Buensuceso, C., Montague, F., and Mahadevan, L., Vanadate stimulates differentiation and neurite outgrowth in rat pheochromocytoma PC12 cells and neurite extension in human neuroblastoma SH-SY5Y cells. Neuroscience, 60, 479–494 (1994).
  • 18) Campbell, X. Z., and Neet, K. E., Hierarchical analysis of the nerve growth factor-dependent and nerve growth factor-independent differentiation signaling pathways in PC12 cells with protein kinase inhibitors. J. Neurosci. Res., 42, 207–219 (1995).
  • 19) Parker, E. M., Monopoli, A., Ongini, E., Lozza, G., and Babij, C. M., Rapamycin, but not FK506 and GPI-1046, increases neurite outgrowth in PC12 cells by inhibiting cell cycle progression. Neuropharmacology, 39, 1913–1919 (2000).
  • 20) Nomoto, H., Tomotoshi, K., Ito, H., and Furukawa, S., Balance of two secretion pathways of nerve growth factor in PC12 cells changes during the progression of their differentiation, with a decrease in constitutive secretion in more differentiated cells. J. Neurosci. Res., 59, 632–642 (2000).
  • 21) Furukawa, S., Kamo, I., Furukawa, Y., Akazawa, S., Satoyoshi, E., Itoh, K., and Hayashi, K., A highly sensitive enzyme immunoassay for mouse beta nerve growth factor. J. Neurochem., 40, 734–744 (1983).
  • 22) McCormick, D. B., Syntheses, characterizations, and biochemical reactivities of 1-N-oxides of 5′-adenylic and 5′-inosinic acids. Biochemistry, 5, 746–751 (1966).
  • 23) Lipps, B. V., Detection of nerve growth factor (NGF) in venoms from diverse source: isolation and characterization of NGF from the venom of honey bee (Apis melifera). J. Nat. Toxins, 9, 13–19 (2000).
  • 24) Lipps, B. V., Antigenic cross-reactivity of nerve growth factors from diverse source: activity versus toxicity of NGF. J. Nat. Toxins, 11, 57–62 (2002).
  • 25) Barker, S. A., Foster, A. B., Lamb, D. C., and Hodgson, N., Identification of 10-hydroxy-delta 2-decenoic acid in royal jelly. Nature, 183, 996–997 (1959).
  • 26) Blum, M. S., Novak, A. F., and Taber, S., 3rd., 10-Hydroxy-delta 2-decenoic acid, an antibiotic found in royal jelly. Science, 130, 452–453 (1959).
  • 27) Townsend, G. F., Morgan, J. F., and Hazlett, B., Activity of 10-hydroxydecenoic acid from royal jelly against experimental leukaemia and ascitic tumours. Nature, 183, 1270–1271 (1959).
  • 28) Rudkin, B. B., Lazarovici, P., Levi, B. Z., Abe, Y., Fujita, K., and Guroff, G., Cell cycle-specific action of nerve growth factor in PC12 cells: differentiation without proliferation. EMBO J., 8, 3319–3325 (1989).
  • 29) Fredholm, B. B., Ijzerman, A. P., Jacobson, K. A., Klotz, K. N., and Linden, J., International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol. Rev., 53, 527–552 (2001).
  • 30) Arslan, G., Kull, B., and Fredholm, B. B., Signaling via A2 A adenosine receptor in four PC12 cell clones. Naunyn Schmiedebergs Arch. Pharmacol., 359, 28–32 (1999).
  • 31) Brown, D. M., and Osborne, M. R., The reaction of adenosine with hydroxylamine. Biochim. Biophys. Acta, 247, 514–518 (1971).
  • 32) Mantsch, H. H., and Barzu, O., Anomalous base-stacking of the N1-oxide of AMP. Z. Naturforsch. C, 32, 901–904 (1977).
  • 33) Brown, G. B., Clarke, D. A., Biesele, J. J., Kaplan, L., and Stevens, M. A., Purine N-oxides. III. Some biological activities of adenine 1-N-oxide derivatives. J. Biol. Chem., 233, 1509–1512 (1958).
  • 34) Montgomery, J. A., Approaches to antiviral chemotherapy. Antiviral Res., 12, 113–131 (1989).
  • 35) Baker, R. O., Bray, M., and Huggins, J. W., Potential antiviral therapeutics for smallpox, monkeypox and other orthopoxvirus infections. Antiviral Res., 57, 13–23 (2003).
  • 36) Kane, E. M., and Shuman, S., Adenosine N1-oxide inhibits vaccinia virus replication by blocking translation of viral early mRNAs. J. Virol., 69, 6352–6358 (1995).
  • 37) Kwong, C. D., Krauth, C. A., Shortnacy-Fowler, A. T., Arnett, G., Hollingshead, M. G., Shannon, W. M., Montgomery, J. A., and Secrist, J. A., 3rd., Synthesis and antiviral evaluation of analogs of adenosine-N1-oxide and 1-(Benzyloxy)adenosine. Nucleosides Nucleotides, 17, 1409–1443 (1998).
  • 38) Charles, M. P., Adamski, D., Kholler, B., Pelletier, L., Berger, F., and Wion, D., Induction of neurite outgrowth in PC12 cells by the bacterial nucleoside N6-methyldeoxyadenosine is mediated through adenosine A2a receptors and via cAMP and MAPK signaling pathways. Biochem. Biophys. Res. Commun., 304, 795–800 (2003).
  • 39) Cheng, H. C., Shih, H. M., and Chern, Y., Essential role of cAMP-response element-binding protein activation by A2 A adenosine receptors in rescuing the nerve growth factor-induced neurite outgrowth impaired by blockage of the MAPK cascade. J. Biol. Chem., 277, 33930–33942 (2002).
  • 40) Lee, F. S., and Chao, M. V., Activation of Trk neurotrophin receptors in the absence of neurotrophins. Proc. Natl. Acad. Sci. USA, 98, 3555–3560 (2001).
  • 41) Arslan, G., and Fredholm, B. B., Stimulatory and inhibitory effects of adenosine A (2A) receptors on nerve growth factor-induced phosphorylation of extracellular regulated kinases 1/2 in PC12 cells. Neurosci. Lett., 292, 183–186 (2000).
  • 42) Daval, J. L., Nehlig, A., and Nicolas, F., Physiological and pharmacological properties of adenosine: therapeutic implications. Life Sci., 49, 1435–1453 (1991).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.