425
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Purification of Glycogen Debranching Enzyme from Porcine Brain: Evidence for Glycogen Catabolism in the Brain

&
Pages 907-915 | Received 15 Sep 2005, Accepted 17 Nov 2005, Published online: 22 May 2014

  • 1) Brown, A. M., Brain glycogen re-awakened. J. Neurochem., 89, 537–552 (2004).
  • 2) Gruetter, R., Glycogen: the forgotten cerebral energy store. J. Neurosci. Res., 74, 179–183 (2003).
  • 3) Choi, I. Y., Seaquist, E. R., and Gruetter, R., Effect of hypoglycemia on brain glycogen metabolism in vivo. J. Neurosci. Res., 72, 25–32 (2003).
  • 4) Oz, G., Henry, P. G., Seaquist, E. R., and Gruetter, R., Direct, noninvasive measurement of brain glycogen metabolism in humans. Neurochem. Int., 43, 323–329 (2003).
  • 5) Roach, P. J., Glycogen and its metabolism. Curr. Mol. Med., 2, 101–120 (2002).
  • 6) Johnson, L. N., Glycogen phosphorylase: control by phosphorylation and allosteric effectors. FASEB J., 6, 2274–2282 (1992).
  • 7) Newgard, C. B., Hwang, P. K., and Fletterick, R. J., The family of glycogen phosphorylase: structure and function. Crit. Rev. Biochem. Mol. Biol., 24, 69–99 (1989).
  • 8) Walker, G. T., and Whelan, W. J., The mechanism of carbohydrase action. 8. Structures of the muscle-phosphorylase limit dextrins of glycogen and amylopectin. Biochem. J., 76, 264–268 (1960).
  • 9) Abdullah, M., and Whelan, W. J., A new pathway in rabbit muscle for the enzymatic debranching of glycogen. Nature, 197, 979–980 (1963).
  • 10) Bates, E. J., Heaton, G. M., Taylor, C., Kernohan, J. C., and Cohen, P., Debranching enzyme from rabbit skeletal muscle: evidence for the location of two active centres on a single polypeptide chain. FEBS Lett., 58, 181–185 (1975).
  • 11) Brown, D. H., Illingworth, B., and Cori, C. F., Combined action of oligo-1,4-1,4-glucantransferase and amylo-1,6-glucosidase in debranching glycogen. Nature, 197, 980–982 (1963).
  • 12) Gordon, R. B., Brown, D. H., and Brown, B. L., Preparation and properties of the glycogen-debranching enzyme from rabbit liver. Biochem. Biophys. Acta, 289, 97–107 (1972).
  • 13) Liu, W., Madsen, N. B., Braun, C., and Withers, S. G., Reassessment of the catalytic mechanism of glycogen debranching enzyme. Biochemistry, 30, 1419–1424 (1991).
  • 14) Nakayama, A., Yamamoto, K., and Tabata, S., Identification of the catalytic residues of bifunctional glycogen debranching enzyme. J. Biol. Chem., 276, 28824–28828 (2001).
  • 15) Taylor, C., Cox, A. J., Kernohan, J. C., and Cohen, P., Debranching enzyme from rabbit skeletal muscle: purification, properties and physiological role. Eur. J. Biochem., 51, 105–115 (1975).
  • 16) Newgard, C. B., Littman, D. R., van Genderen, C., Smith, M., and Fletterick, R. J., Human brain glycogen phosphorylase: cloning, sequence analysis, chromosonal mapping, tissue expression, and comparison with the human liver and muscle. J. Biol. Chem., 263, 3850–3857 (1988).
  • 17) Reinhart, P. H., Pfeiffer, B., Spengler, S., and Hamprecht, B., Purification of glycogen phosphorylase from bovine brain and immunocytochemical examination of rat glial primary cultures using monoclonal antibodies raised against this enzyme. J. Neurochem., 54, 1474–1483 (1990).
  • 18) Narahara, E., Makino, Y., and Omichi, K., Glycogen debranching enzyme in bovine brain. J. Biochem., 130, 465–470 (2001).
  • 19) Watanabe, Y., Makino, Y., and Omichi, K., Fluorogenic substrates of glycogen debranching enzyme for assaying debranching activity. Anal. Biochem., 340, 279–286 (2005).
  • 20) Hers, H. G., Verhue, W., and van Hoof, F., The determination of amylo-1,6-glucosidase. Eur. J. Biochem., 2, 257–264 (1967).
  • 21) Omichi, K., and Hase, S., An assay method for glycogen debranching enzyme using new fluorogenic substrates and its application to detection of the enzyme in mouse brain. J. Biochem., 123, 932–936 (1998).
  • 22) Davis, B. J., Disk electropholesis. II. Method and application to human serum proteins. Ann. NY Acad. Sci., 121, 404–427 (1964).
  • 23) Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685 (1970).
  • 24) Beckmann, C. O., The structure of amylopectin and glycogen. Ann. NY Acad. Sci., 57, 384–397 (1953).
  • 25) Nelson, T. E., Palmer, D. H., and Larner, J., An investigation of properties of rabbit muscle oligo-1,4→1,4-glucantransferase. Biochim. Biophys. Acta, 212, 269–280 (1970).
  • 26) Braun, C., and Withers, S. G., An assay for the transferase activity of glycogen debranching enzyme. Carbohydr. Res., 271, 113–118 (1995).
  • 27) Tabata, S., and Dohi, Y., An assay for oligo-(1→4)→(1→4)-glucantransferase activity in the glycogen debranching enzyme system by using HPLC with a pulsed amperometric detector. Carbohydr. Res., 230, 179–183 (1992).
  • 28) Lomako, J., Lomako, W. M., Whelan, W. J., Dombro, R. S., Neary, J. T., and Norenberg, M. D., Glycogen systhesis in the astrocyte: from glycogenin to proglycogen to glycogen. FASEB J., 7, 1386–1393 (1993).
  • 29) Wiesinger, H., Hamprecht, B., and Dringen, R., Metabolic pathways for glucose in astrocytes. Glia, 21, 22–34 (1997).
  • 30) Bluml, S., Moreno-Torres, A., Shic, F., Nguy, C. H., and Ross, B. D., Tricarboxylic acid cycle of glia in the in vivo human brain. NMR Biomed., 15, 1–5 (2002).
  • 31) Curz, F., and Cerdan, S., Quantitative 13C NMR studies of metabolic compartmentation in the adult mammalian brain. NMR Biomed., 12, 451–462 (1999).
  • 32) Lebon, V., Petersen, K. F., Cline, G. W., Shen, J., Mason, G. F., Dufour, S., Behar, K. L., Shulman, G. I., and Rothman, D. L., Astroglial contribution to brain energy metabolism in humans revealed by 13C nuclear magnetic resonance spectroscopy: elucidation of the dominant pathway for neurotransmitter glutamate repletion and measurement of astrocytic oxidative metabolism. J. Neurosci., 22, 1523–1531 (2002).
  • 33) Dringen, R., Gebhardt, R., and Hamprecht, B., Glycogen in astrocytes: possible function as lactate supply for neighboring cells. Brain Res., 623, 208–214 (1993).
  • 34) Brown, A. M., Tekkok, S. B., and Ransom, B. R., Energy transfer from astrocytes to axons: the role of CNS glycogen. Neurochem. Int., 45, 529–536 (2004).
  • 35) Eyre, J. A., Stuart, A. G., Forsyth, R. J., Heaviside, D., and Bartlett, K., Glucose export from the brain in man: evidence for a role for astrocytic glycogen as a reservoir of glucose for neural metabolism. Brain Res., 635, 349–352 (1994).
  • 36) Ghosh, A., Cheung, Y. Y., Mansfield, B. C., and Chou, J. Y., Brain contains a functional glucose-6-phosphate complex capable of endogenous glucose production. J. Biol. Chem., 280, 11114–11119 (2005).
  • 37) Guionie, O., Clottes, E., Stafford, K., and Burchell, A., Identification and characterization of a new human glucose-6-phosphatase isoform. FEBS Lett., 551, 159–164 (2003).
  • 38) Martin, C. C., Oeser, J. K., Svitek, C. A., Hunter, S. I., Hutton, J. C., and O’Brien, R. M., Identification and characterization of a human cDNA and gene encoding a ubiquitously expressed glucose-6-phosphatase catalytic subunit-related protein. J. Mol. Endocrinol., 29, 205–222 (2002).
  • 39) Newsholme, E. A., and Leech, A. R., “Biochemistry for the Medical Sciences,” Wiley, Toronto, pp. 1–982 (1983).
  • 40) Knull, H. R., and Khandelwal, R. L., Glycogen metabolizing enzymes in brain. Neurochem. Res., 7, 1307–1317 (1982).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.