331
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Triiodothyronine (T3) and Fructose Coordinately Enhance Expression of the GLUT5 Gene in the Small Intestine of Rats during Weaning Period

, &
Pages 1345-1347 | Received 10 Jan 2007, Accepted 16 Feb 2007, Published online: 22 May 2014

  • 1) Koldovsky, O., Response of the gastrointestinal tract to premature weaning in experimental animals. Pediatrics, 75, 199–206 (1985).
  • 2) Wright, E. M. I., Glucose galactose malabsorption. Am. J. Physiol., 275, G879–882 (1998).
  • 3) Freeman, T. C., Wood, I. S., Sirinathsinghji, D. J., Beechey, R. B., Dyer, J., and Shirazi-Beechey, S. P., The expression of the Na+/glucose cotransporter (sglt1) gene in lamb small intestine during postnatal development. Biochim. Biophys. Acta, 1146, 203–212 (1993).
  • 4) Shu, R., David, E. S., and Ferraris, R. P., Dietary fructose enhances intestinal fructose transport and glut5 expression in weaning rats. Am. J. Physiol., 272, G446–453 (1997).
  • 5) Castello, A., Guma, A., Sevilla, L., Furriols, M., Testar, X., Palacin, M., and Zorzano, A., Regulation of glut5 gene expression in rat intestinal mucosa: regional distribution, circadian rhythm, perinatal development and effect of diabetes. Biochem. J., 309 (Pt. 1), 271–277 (1995).
  • 6) Kojima, T., Nishimura, M., Yajima, T., Kuwata, T., Suzuki, Y., Goda, T., Takase, S., and Harada, E., Developmental changes in the regional Na+/glucose transporter mRNA along the small intestine of suckling rats. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 122, 89–95 (1999).
  • 7) Cui, X. L., Schlesier, A. M., Fisher, E. L., Cerqueira, C., and Ferraris, R. P., Fructose-induced increases in neonatal rat intestinal fructose transport involve the PI3-kinase/AKT signaling pathway. Am. J. Physiol. Gastrointest. Liver Physiol., 288, G1310–1320 (2005).
  • 8) Mochizuki, K., Yagi, E., Sakaguchi, N., Mochizuki, H., Takabe, S., Kuranuki, S., Suzuki, T., Shimada, T., and Goda, T., The critical period for thyroid hormone responsiveness through thyroid hormone receptor isoform α in the postnatal small intestine. Biochim. Biophys. Acta, 1770, 609–616 (2007).
  • 9) Fraichard, A., Chassande, O., Plateroti, M., Roux, J. P., Trouillas, J., Dehay, C., Legrand, C., Gauthier, K., Kedinger, M., Malaval, L., Rousset, B., and Samarut, J., The T3R alpha gene encoding a thyroid hormone receptor is essential for post-natal development and thyroid hormone production. EMBO J., 16, 4412–4420 (1997).
  • 10) Hodin, R. A., Meng, S., and Chamberlain, S. M., Thyroid hormone responsiveness is developmentally regulated in the rat small intestine: a possible role for the alpha-2 receptor variant. Endocrinology, 135, 564–568 (1994).
  • 11) Plateroti, M., Chassande, O., Fraichard, A., Gauthier, K., Freund, J. N., Samarut, J., and Kedinger, M., Involvement of T3Ralpha- and beta-receptor subtypes in mediation of T3 functions during postnatal murine intestinal development. Gastroenterology, 116, 1367–1378 (1999).
  • 12) Gauthier, K., Plateroti, M., Harvey, C. B., Williams, G. R., Weiss, R. E., Refetoff, S., Willott, J. F., Sundin, V., Roux, J. P., Malaval, L., Hara, M., Samarut, J., and Chassande, O., Genetic analysis reveals different functions for the products of the thyroid hormone receptor alpha locus. Mol. Cell. Biol., 21, 4748–4760 (2001).
  • 13) Plateroti, M., Kress, E., Mori, J. I., and Samarut, J., Thyroid hormone receptor alpha1 directly controls transcription of the beta-catenin gene in intestinal epithelial cells. Mol. Cell. Biol., 26, 3204–3214 (2006).
  • 14) Kuranuki, S., Mochizuki, K., Tanaka, T., and Goda, T., The possible roles of homeobox protein, cdx-2 for the expression of LPH gene during postnatal development. Life Sci., 80, 795–799 (2007).
  • 15) Chomczynski, P., and Sacchi, N., Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal. Biochem., 162, 156–159 (1987).
  • 16) Goda, T., Yasutake, H., Suzuki, Y., Takase, S., and Koldovsky, O., Diet-induced changes in gene expression of lactase in rat jejunum. Am. J. Physiol., 268, G1066–1073 (1995).
  • 17) Cui, X. L., Ananian, C., Perez, E., Strenger, A., Beuve, A. V., and Ferraris, R. P., Cyclic AMP stimulates fructose transport in neonatal rat small intestine. J. Nutr., 134, 1697–1703 (2004).
  • 18) Gouyon, F., Onesto, C., Dalet, V., Pages, G., Leturque, A., and Brot-Laroche, E., Fructose modulates GLUT5 mRNA stability in differentiated Caco-2 cells: role of CAMP-signalling pathway and PABP (polyadenylated-binding protein)-interacting protein (PABP) 2. Biochem. J., 375, 167–174 (2003).
  • 19) Mesonero, J., Matosin, M., Cambier, D., Rodriguez-Yoldi, M. J., and Brot-Laroche, E., Sugar-dependent expression of the fructose transporter GLUT5 in Caco-2 cells. Biochem. J., 312 (Pt. 3), 757–762 (1995).
  • 20) Mahraoui, L., Takeda, J., Mesonero, J., Chantret, I., Dussaulx, E., Bell, G. I., and Brot-Laroche, E., Regulation of expression of the human fructose transporter (GLUT5) by cyclic AMP. Biochem. J., 301 (Pt. 1), 169–175 (1994).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.