689
Views
125
CrossRef citations to date
0
Altmetric
Original Articles

Proteomics Reveals New Salt Responsive Proteins Associated with Rice Plasma Membrane

, , &
Pages 2144-2154 | Received 12 Jan 2007, Accepted 19 Jun 2007, Published online: 22 May 2014

  • 1) Khush, G. S., Green revolution: the way forward. Nat. Rev. Genet., 2, 815–822 (2001).
  • 2) Yeo, A. R., and Flowers, T. J., Nonosmotic effects of polyethylene glycols upon sodium transport and sodium-potassium selectivity by rice roots. Plant Physiol., 75, 298–303 (1984).
  • 3) Bohnert, H. J., and Cushman, J. C., The ice plant cometh: Lessons in abiotic stress tolerance. J. Plant Growth Regul., 19, 334–346 (2000).
  • 4) Moons, A., Bauw, G., Prinsen, E., Montagu, M. V., and Straeten, D. V., Molecular and physiological responses to abscisic acid and salts in roots of salt-sensitive and salt-tolerant indica rice varieties. Plant Physiol., 107, 177–186 (1995).
  • 5) Moons, A., Gielen, J., Vandekerckhove, J., Straeten, D. V., Gheysen, G., and Montagu, V. M., An abscisic-acid- and salt-stress-responsive rice cDNA from a novel plant gene family. Planta, 202, 443–454 (1997).
  • 6) Salekdeh, G. H., Siopongco, J., Wade, L. J., Ghareyazie, B., and Bennett, J., Proteomic analysis of rice leaves during drought stress and recovery. Proteomics, 2, 1131–1145 (2002).
  • 7) Abbasi, F. M., and Komatsu, S. A., Proteomic approach to analyze salt-responsive proteins in rice leaf sheath. Proteomics, 4, 2072–2081 (2004).
  • 8) Kim, D. W., Rakwal, R., Agrawal, G. K., Jung, Y. H., Shibato, J., Jwa, N. S., Iwahashi, Y., Iwahashi, H., Kim, H., Shim, I. S., and Usui, K., A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis, 23, 4521–4539 (2005).
  • 9) Mikami, S., Kishimoto, T., Hori, H., and Mitsui, T., Technical improvement to 2D-PAGE of rice organelle membrane proteins. Biosci. Biotechnol. Biochem., 66, 1170–1173 (2002).
  • 10) Santoni, V., Rouquie, D., Doumas, P., Mansion, M., Boutry, M., Degand, H., Dupree, P., Packman, L., Sherrier, J., Prime, T., Bauw, G., Posada, E., Rouze, P., Dehais, P., Sahnoun, I., Barlier, I., and Rossignol, M., Use of a proteome strategy for tagging proteins present at the plasma membrane. Plant J., 16, 633–641 (1998).
  • 11) Rolland, N., Ferro, M., Ephritikhine, G., Marmagne, A., Ramus, C., Brugiere, S., Salvi, D., Seigneurin-Berny, D., Bourguignon, J., Barbier-Brygoo, H., Joyard, J., and Garin, J., A versatile method for deciphering plant membrane proteomes. J. Exp. Bot., 57, 1579–1589 (2006).
  • 12) Blumwald, E., Sodium transport and salt tolerance in plants. Curr. Opin. Cell Biol., 12, 431–434 (2000).
  • 13) Yoshida, S., Forno, D. A., Cook, J. H., and Gomez, K. A., “Laboratory Manual for Physiological Studies of Rice,” I.R.R.I., Manila, pp. 61–66 (1976).
  • 14) Kelen, M., Demiralay, E. C., Sen, S., and Ozkan, G., Separation of abscisic acid, indole-3-acetic acid, gibberellic acid in 99 R (Vitis berlandieri x Vitisrupestris) and Rose Oil (Rosa damascena Mill.) by reversed phase liquid chromatography. Turk. J. Chem., 28, 603–610 (2004).
  • 15) Larsson, C., Møller, I. M., and Widell, S., “An Introduction to the Plant Plasma Membrane: Its Molecular Composition and Organization,” Springer-Verlag, Berlin, pp. 451–468 (1990).
  • 16) Fiske, C. H., and Subbarow, Y., The colorimetric determination of phosphorus. J. Biol. Chem., 66, 375–400 (1925).
  • 17) Blum, H., Beier, H., and Gross, H. J., Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis, 8, 93–99 (1987).
  • 18) Livak, K. J., and Schmittgen, T. D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) Method. Methods, 25, 402–408 (2001).
  • 19) Moradi, F., Ismail, A., Gregorio, G., and Egdane, J., Salinity tolerance of rice during reproductive development and association with tolerance at the seedling stage. Indian J. Plant Physiol., 8, 105–116 (2003).
  • 20) Omakawa, H., and Aonuma, S. I., Amelioration of the salt-stressed root growth of rice and normalization of the Na+ distribution between the shoot and root by (S)-α-Methylbenzyl-2-fluoro-4-methylphenylurea. Biosci. Biotechnol. Biochem., 66, 336–343 (2002).
  • 21) Yeo, A. R., and Flowers, T., Accumulation and localization of sodium ions within the shoots of rice (Oryza sativa) varieties differing in salinity resistance. J. Physiol. Plant., 56, 343–348 (1982).
  • 22) Munns, R., Physiological processes limiting plant growth in saline soil: some dogmas and hypotheses. Plant Cell Environ., 25, 15–24 (1993).
  • 23) Spollen, W. G., LeNoble, M. E., Samuels, T. D., Bernstein, N., and Sharp, R. E., Abscisic acid accumulation maintains maize primary root elongation at low water potentials by restricting ethylene production. Plant Physiol., 122, 967–976 (2000).
  • 24) Zeevaatr, J., and Creelman, R., Metabolism and physiology of abscisic acid. Ann. Rev. Plant Physiol., 39, 439–473 (1988).
  • 25) Kikuchi, S., Satoh, K., Nagata, T., Kawagashira, N., Doi, K., Kishimoto, N., Yazaki, J., Ishikawa, M., Yamada, H., Ooka, H., Hotta, I., Kojima, K., Namiki, T., Ohneda, E., Yahagi, W., Suzuki, K., Li, C. J., Ohtsuki, K., Shishiki, T., Otomo, Y., Murakami, K., Iida, Y., Sugano, S., Fujimura, T., Suzuki, Y., Tsunoda, Y., Kurosaki, T., Kodama, T., Masuda, H., Kobayashi, M., Xie, Q., Lu, M., Narikawa, R., Sugiyama, A., Mizuno, K., Yokomizo, S., Niikura, J., Ikeda, R., Ishibiki, J., Kawamata, M., Yoshimura, A., Miura, J., Kusumegi, T., Oka, M., Ryu, R., Ueda, M., Matsubara, K., Kawai, J., Carninci, P., Adachi, J., Aizawa, K., Arakawa, T., Fukuda, S., Hara, A., Hashizume, W., Hayatsu, N., Imotani, K., Ishii, Y., Itoh, M., Kagawa, I., Kondo, S., Konno, H., Miyazaki, A., Osato, N., Ota, Y., Saito, R., Sasaki, D., Sato, K., Shibata, K., Shinagawa, A., Shiraki, T., Yoshino, M., Hayashizaki, Y., and Yasunishi, A., Collection, mapping, and annotation of over 28,000 cDNA clones from japonica. Science, 301, 376–379 (2003).
  • 26) Chen, F., Li, Q., Sun, L., and He, Z., The rice 14-3-3 gene family and its involvement in responses to biotic and abiotic stress. DNA Res., 13, 53–63 (2006).
  • 27) Nadimpalli, R., Yalpani, N., Johal, G. S., and Simmons, C. R., Prohibitins, stomatins, and plant disease response genes compose a protein superfamily that controls cell proliferation, ion channel regulation, and death. J. Biol. Chem., 275, 29579–29586 (2000).
  • 28) Narita, Y., Taguchi, H., Nakamura, T., Ueda, A., Shi, W., and Takabe, T., Characterization of the salt-inducible methionine synthase from barley leaves. Plant Sci., 167, 1009–1016 (2004).
  • 29) Bariola, P. A., Retelska, D., Stasiak, A., Kammerer, R. A., Fleming, A., Hijri, M., Frank, S., and Farmer, E. E., Remorins form a novel family of coiled coil-forming oligomeric and filamentous proteins associated with apical, vascular and embryonic tissues in plants. Plant Mol. Biol., 55, 579–594 (2004).
  • 30) Reymond, P., Weber, H., Damond, M., and Farmer, E. E., Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell, 12, 707–720 (2000).
  • 31) Palmgren, M. G., Proton gradients and plant growth: role of the plasma membrane H+-ATPase. Adv. Bot. Res., 28, 1–70 (1998).
  • 32) Ward, J. M., Pei, Z. M., and Schroeder, J. I., Roles of ion channels in initiation of signal transduction in higher plants. Plant Cell, 7, 833–844 (1995).
  • 33) Roberts, M. R., 14-3-3 proteins and new partners in plant cell signaling. Trends Plant Sci., 8, 218–223 (2003).
  • 34) Jarillo, J. A., Capel, J., Leyva, A., Martinez-Zapater, J. M., and Salinas, J., Two related low-temperature-inducible genes of Arabidopsis encode proteins showing high homology to 14-3-3 proteins a family of putative kinase regulators. Plant Mol. Biol., 25, 693–704 (1994).
  • 35) Chen, Z., Fu, H., and Liu, D., A NaCl-regulated plant gene encoding a brain protein homology that activates ADP ribosyltransferase and inhibits protein kinase C. Plant J., 6, 729–740 (1994).
  • 36) Fulgosi, H., Soll, J., Maraschin, F. S., Korthout, H. A., Wang, M., and Testerink, C., 14-3-3 proteins and plant development. Plant Mol. Biol., 50, 1019–1029 (2002).
  • 37) Bohnert, H. J., and Jensen, R. G., Strategies for engineering water-stress tolerance in plants. Trends Biotechnol., 14, 89–97 (1996).
  • 38) Akileswaran, L., Brock, B. J., Cereghino, J. L., and Gold, M. H., 1,4-benzoquinone reductase from Phanerochaete chrysosporium: cDNA cloning and regulation of expression. Appl. Environ. Microbiol., 65, 415–421 (1999).
  • 39) Beyer, R. E., Segura-Aguilar, J., Bernardo, D. S., Cavazzoni, M., Fato, R., Fiorentini, D., Galli, M. C., Setti, M., Landi, L., and Lenaz, G., The role of DT-diaphorase in the maintenance of the reduced antioxidant form of coenzyme Q in membrane systems. Proc. Natl. Acad. Sci. USA, 93, 2528–2532 (1996).
  • 40) Cadenas, E., Antioxidant and prooxidant functions of DT-diaphorase in quinone metabolism. Biochem. Pharmacol., 49, 127–140 (1995).
  • 41) Navarro, F., Navas, P., Burgess, J. R., Bello, R. I., Decabo, R., Arroyo, A., and Villalba, J. M., Vitamin E and selenium deficiency induces expression of the ubiquinone-dependent antioxidant system at the plasma membrane. FASEB J., 12, 1665–1673 (1998).
  • 42) Forthoffer, N., Gomez-Diaz, C., Bello, R. I., Buron, M. I., Martin, S. F., Rodriguez-Aguilera, J. C., Navs, P., and Villalba, J. M., Novel plasma membrane quinone reductase and NAD(P)H:quinone oxidoreductase 1 are upregulated by serum withdrawal in human promyelocytic HL-60 cells. J. Bioenerg. Biomem., 34, 209–219 (2002).
  • 43) Turano, C., Coppari, S., Altieri, F., and Ferraro, A., Proteins of the PDI family: unpredicted non-ER locations and functions. J. Cell. Physiol., 193, 154–163 (2002).
  • 44) Zai, A., Rudd, M. A., Scribner, A. W., and Loscalzo, J., Cell-surface protein disulfide isomerase catalyzes transnitrosation and regulates intracellular transfer of nitric oxide. J. Clin. Invest., 103, 393–399 (1999).
  • 45) Neil, S. J., Desikan, R., Clarke, A., and Hancock, J. T., Nitric oxide is a novel component of abscisic acid signaling in the stomotal guard cells. Plant Physiol., 128, 13–16 (2002).
  • 46) Gygi, S. P., Rochon, Y., Franza, B. R., and Aebersold, R., Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol., 19, 1720–1730 (1999).
  • 47) Chen, G., Gharib, T. G., Huang, C. C., Jeremy, M. G., Taylor, J. M., Misek, D. E., Kardia, S. L., Giordano, T. J., Iannettoni, M. D., Orringer, M. B., Hanash, S. M., and Beer, D. G., Discordant protein and mRNA expression in lung adenocarcinomas. Mol. Cell. Prot., 1, 304–313 (2002).
  • 48) Foster, L. J., Zeemann, P. A., Li, C., Mann, M., Jensen, O. N., and Kassem, M., Differential expression profiling of membrane proteins by quantitative proteomics in a human mesenchymal stem cell line undergoing osteoblast differentiation. Stem Cells, 23, 1367–1377 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.