119
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Effects of Ala Substitution for Conserved Cys Residues in Mouse Ileal and Hepatic Na+-Dependent Bile Acid Transporters

, , , &
Pages 1865-1872 | Received 17 Jan 2007, Accepted 30 Apr 2007, Published online: 22 May 2014

  • 1) Saeki, T., Matoba, K., Furukawa, H., Kirifuji, K., Kanamoto, R., and Iwami, K., Characterization, cDNA cloning, and functional expression of mouse ileal sodium-dependent bile acid transporter. J. Biochem. (Tokyo), 125, 846–851 (1999).
  • 2) Shneider, B. L., Dawson, P. A., Christie, D.-M., Hardikar, W., Wong, M. H., and Suchy, F. J., Cloning and molecular characterization of the ontogeny of a rat ileal sodium-dependent bile acid transporter. J. Clin. Invest., 95, 745–754 (1995).
  • 3) Dawson, P. A., and Oelkers, P., Bile acid transporters. Curr. Opin. Lipidol., 6, 109–114 (1995).
  • 4) Wong, M. H., Oelkers, P., Craddock, A. L., and Dawson, P. A., Expression cloning and characterization of the hamster ileal sodium-dependent bile acid transporter. J. Biol. Chem., 269, 1340–1347 (1994).
  • 5) Saeki, T., Takahashi, N., Kanamoto, R., and Iwami, K., Characterization of cloned mouse Na+/taurocholate cotransporting polypeptide by transient expression in COS-7 cells. Biosci. Biotechnol. Biochem., 66, 1116–1118 (2002).
  • 6) Hagenbuch, B., and Meier, P. J., Molecular cloning, chromosomal localization, and functional characterization of a human liver Na+/bile acid cotransporter. J. Clin. Invest., 93, 1326–1331 (1994).
  • 7) Hagenbuch, B., Stieger, B., Foguet, M., Lubbert, H., and Meier, P. J., Functional expression cloning and characterization of the hepatocyte Na+/bile acid cotransport system. Proc. Natl. Acad. Sci. USA, 88, 10629–10633 (1991).
  • 8) Geyer, J., Wilke, T., and Petzinger, E., The solute carrier family SLC10: more than a family of bile acid transporters regarding function and phylogenetic relationships. Naunyn Schmiedebergs Arch. Pharmacol., 372, 413–431 (2006).
  • 9) Sun, A. Q., Balasubramaniyan, N., Chen, H., Shahid, M., and Suchy, F. J., Identification of functionally relevant residues of the rat ileal apical sodium-dependent bile acid cotransporter. J. Biol. Chem., 281, 16410–16418 (2006).
  • 10) Banerjee, A., Ray, A., Chang, C., and Swaan, P. W., Site-directed mutagenesis and use of bile acid-MTS conjugates to probe the role of cysteines in the human apical sodium-dependent bile acid transporter (SLC10A2). Biochemistry, 44, 8908–8917 (2005).
  • 11) Ho, R. H., Leake, B. F., Roberts, R. L., Lee, W., and Kim, R. B., Ethnicity-dependent polymorphism in Na+-taurocholate cotransporting polypeptide (SLC10A1) reveals a domain critical for bile acid substrate recognition. J. Biol. Chem., 279, 7213–7222 (2004).
  • 12) Zahner, D., Eckhardt, U., and Petzinger, E., Transport of taurocholate by mutants of negatively charged amino acids, cysteines, and threonines of the rat liver sodium-dependent taurocholate cotransporting polypeptide Ntcp. Eur. J. Biochem., 270, 1117–1127 (2003).
  • 13) Saeki, T., Kuroda, T., Matsumoto, M., Kanamoto, R., and Iwami, K., Effects of Cys mutation on taurocholic acid transport by mouse ileal and hepatic sodium-dependent bile acid transporters. Biosci. Biotechnol. Biochem., 66, 467–470 (2002).
  • 14) Hallen, S., Bjorquist, A., Ostlund-Lindqvist, A. M., and Sachs, G., Identification of a region of the ileal-type sodium/bile acid cotransporter interacting with a competitive bile acid transport inhibitor. Biochemistry, 41, 14916–14924 (2002).
  • 15) Wang, W., Xue, S., Ingles, S. A., Chen, Q., Diep, A. T., Frankl, H. D., Stolz, A., and Haile, R. W., An association between genetic polymorphisms in the ileal sodium-dependent bile acid transporter gene and the risk of colorectal adenomas. Cancer Epidemiol. Biomarkers Prev., 10, 931–936 (2001).
  • 16) Sun, A. Q., Arrese, M. A., Zeng, L., Swaby, I., Zhou, M. M., and Suchy, F. J., The rat liver Na+/bile acid cotransporter: Importance of the cytoplasmic tail to function and plasma membrane targeting. J. Biol. Chem., 276, 6825–6833 (2001).
  • 17) Kramer, W., Girbig, F., Glombik, H., Corsiero, D., Stengelin, S., and Weyland, C., Identification of a ligand-binding site in the Na+/bile acid cotransporting protein from rabbit ileum. J. Biol. Chem., 276, 36020–36027 (2001).
  • 18) Hallen, S., Fryklund, J., and Sachs, G., Inhibition of the human sodium/bile acid cotransporters by side-specific methanethiosulfonate sulfhydryl reagents: substrate-controlled accessibility of site of inactivation. Biochemistry, 39, 6743–6750 (2000).
  • 19) Zegers, M. M. P., and Hoekstra, D., Mechanisms and functional features of polarized membrane traffic in epithelial and hepatic cells. Biochem. J., 336, 257–269 (1998).
  • 20) Oelkers, P., Kirby, L. C., Heubi, J. E., and Dawson, P. A., Primary bile acid malabsorption caused by mutations in the ileal sodium-dependent bile acid transporter gene (SLC10A2). J. Clin. Invest., 99, 1880–1887 (1997).
  • 21) Wong, M. H., Oelkers, P., and Dawson, P. A., Identification of a mutation in the ileal sodium-dependent bile acid transporter gene that abolishes transport activity. J. Biol. Chem., 270, 27228–27234 (1995).
  • 22) Banerjee, A., and Swaan, P. W., Membrane topology of human ASBT (SLC10A2) determined by dual label epitope insertion scanning mutagenesis: new evidence for seven transmembrane domains. Biochemistry, 45, 943–953 (2006).
  • 23) Hallen, S., Branden, M., Dawson, P. A., and Sachs, G., Membrane insertion scanning of the human ileal sodium/bile acid co-transporter. Biochemistry, 38, 11379–11388 (1999).
  • 24) Hallen, S., Mareninova, O., Branden, M., and Sachs, G., Organization of the membrane domain of the human liver sodium/bile acid cotransporter. Biochemistry, 41, 7253–7266 (2002).
  • 25) Mareninova, O., Shin, J. M., Vagin, O., Turdikulova, S., Hallen, S., and Sachs, G., Topography of the membrane domain of the liver Na+-dependent bile acid transporter. Biochemistry, 44, 13702–13712 (2005).
  • 26) Zhang, E. Y., Phelps, M. A., Banerjee, A., Khantwal, C. M., Chang, C., Helsper, F., and Swaan, P. W., Topology scanning and putative three-dimensional structure of the extracellular binding domains of the apical sodium-dependent bile acid transporter (SLC10A2). Biochemistry, 43, 11380–11392 (2004).
  • 27) Tombline, G., Urbatsch, I. L., Virk, N., Muharemagic, A., White, L. B., and Senior, A. E., Expression, purification, and characterization of cysteine-free mouse P-glycoprotein. Arch. Biochem. Biophys., 445, 124–128 (2006).
  • 28) Loo, T. W., and Clarke, D. M., Membrane topology of a cysteine-less mutant of human P-glycoprotein. J. Biol. Chem., 270, 843–848 (1995).
  • 29) Blumrich, M., and Petzinger, E., Two distinct types of SH-groups are necessary for bumetanide and bile acid uptake into isolated rat hepatocytes. Biochim. Biophys. Acta, 1149, 278–284 (1993).
  • 30) Kramer, W., Nicol, S.-B., Girbig, F., Gutjahr, U., Kowalewski, S., and Fasold, H., Characterization and chemical modification of the Na+-dependent bile-acid transport system in brush-border membrane vesicles from rabbit ileum. Biochim. Biophys. Acta, 1111, 93–102 (1992).
  • 31) Sun, A. Q., Salkar, R., Sachchidanand, Xu, S., Zeng, L., Zhou, M. M., and Suchy, F. J., A 14-amino acid sequence with a beta-turn structure is required for apical membrane sorting of the rat ileal bile acid transporter. J. Biol. Chem., 278, 4000–4009 (2003).
  • 32) Sun, A. Q., Swaby, I., Xu, S., and Suchy, F. J., Cell-specific basolateral membrane sorting of the human liver Na+-dependent bile acid cotransporter. Am. J. Physiol. Gastrointest. Liver Physiol., 280, G1305–G1313 (2001).
  • 33) Sun, A. Q., Ananthanarayanan, M., Soroka, C. J., Thevananther, S., Shneider, B. L., and Suchy, F. J., Sorting of rat liver and ileal sodium-dependent bile acid transporters in polarized epithelial cells. Am. J. Physiol., 275, G1045–G1055 (1998).
  • 34) Tusnády, G. E., and Simon, I., The HMMTOP transmembrane topology prediction server. Bioinformatics, 17, 849–850 (2001).
  • 35) Tusnády, G. E., and Simon, I., Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J. Mol. Biol., 283, 489–506 (1998).
  • 36) Balakrishnan, A., Wring, S. A., and Polli, J. E., Interaction of native bile acids with human apical sodium-dependent bile acid transporter (hASBT): influence of steroidal hydroxylation pattern and C-24 conjugation. Pharm. Res., 23, 1451–1459 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.