558
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

F-Box Proteins That Contain Sugar-Binding Domains

Pages 2623-2631 | Published online: 22 May 2014

  • 1) Varki, A., Biological roles of oligosaccharides: all of the theories are correct. Glycobiology, 3, 97–130 (1993).
  • 2) Helenius, A., and Aebi, M., Intracellular functions of N-linked glycans. Science, 291, 2364–2369 (2001).
  • 3) Ellgaard, L., and Helenius, A., Quality control in the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol., 4, 181–191 (2003).
  • 4) Plemper, R. K., and Wolf, D. H., Retrograde protein translocation: ERADication of secretory proteins in health and disease. Trends Biochem. Sci., 24, 266–270 (1999).
  • 5) Yoshida, Y., A novel role for N-glycans in the ERAD system. J. Biochem. (Tokyo), 134, 183–190 (2003).
  • 6) Spiro, R. G., Role of N-linked polymannose oligosaccharides in targeting glycoproteins for endoplasmic reticulum-associated degradation. Cell. Mol. Life Sci., 61, 1025–1041 (2004).
  • 7) Hebert, D. N., Garman, S. C., and Molinari, M., The glycan code of the endoplasmic reticulum: asparagine-linked carbohydrates as protein maturation and quality-control tags. Trends Cell. Biol., 15, 364–370 (2005).
  • 8) Yoshida, Y., Chiba, T., Tokunaga, F., Kawasaki, H., Iwai, K., Suzuki, T., Ito, Y., Matsuoka, K., Yoshida, M., Tanaka, K., and Tai, T., E3 ubiquitin ligase that recognizes sugar chains. Nature, 418, 438–442 (2002).
  • 9) Blom, D., Hirsch, C., Stern, P., Tortorella, D., and Ploegh, H. L., A glycosylated type I membrane protein becomes cytosolic when peptide: N-glycanase is compromised. EMBO J., 23, 650–658 (2004).
  • 10) Hershko, A., and Ciechanover, A., The ubiquitin system. Annu. Rev. Biochem., 67, 425–479 (1998).
  • 11) Pickart, C. M., Mechanisms underlying ubiquitination. Annu. Rev. Biochem., 70, 503–533 (2001).
  • 12) Skowyra, D., Craig, K. L., Tyers, M., Elledge, S. J., and Harper, J. W., F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell, 91, 209–219 (1997).
  • 13) Feldman, R. M., Correll, C. C., Kaplan, K. B., and Deshaies, R. J., A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell, 91, 221–230 (1997).
  • 14) Freemont, P. S., Hanson, I. M., and Trowsdale, J., A novel cysteine-rich sequence motif. Cell, 64, 483–484 (1991).
  • 15) Bai, C., Sen, P., Hofmann, K., Ma, L., Goebl, M., Harper, J. W., and Elledge, S. J., SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell, 86, 263–274 (1996).
  • 16) Jin, J., Cardozo, T., Lovering, R. C., Elledge, S. J., Pagano, M., and Harper, J. W., Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev., 18, 2573–2580 (2004).
  • 17) Winston, J. T., Koepp, D. M., Zhu, C., Elledge, S. J., and Harper, J. W., A family of mammalian F-box proteins. Curr. Biol., 9, 1180–1182 (1999).
  • 18) Ilyin, G. P., Serandour, A. L., Pigeon, C., Rialland, M., Glaise, D., and Guguen-Guillouzo, C., A new subfamily of structurally related human F-box proteins. Gene, 296, 11–20 (2002).
  • 19) Erhardt, J. A., Hynicka, W., DiBenedetto, A., Shen, N., Stone, N., Paulson, H., and Pittman, R. N., A novel F box protein, NFB42, is highly enriched in neurons and induces growth arrest. J. Biol. Chem., 273, 35222–35227 (1998).
  • 20) Cenciarelli, C., Chiaur, D. S., Guardavaccaro, D., Parks, W., Vidal, M., and Pagano, M., Identification of a family of human F-box proteins. Curr. Biol., 9, 1177–1179 (1999).
  • 21) Henzl, M. T., O’Neal, J., Killick, R., Thalmann, I., and Thalmann, R., OCP1, an F-box protein, co-localizes with OCP2/SKP1 in the cochlear epithelial gap junction region. Hear. Res., 157, 100–111 (2001).
  • 22) Eom, C. Y., and Lehman, I. R., Replication-initiator protein (UL9) of the herpes simplex virus 1 binds NFB42 and is degraded via the ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci. USA, 100, 9803–9807 (2003).
  • 23) Eom, C. Y., Heo, W. D., Craske, M. L., Meyer, T., and Lehman, I. R., The neural F-box protein NFB42 mediates the nuclear export of the herpes simplex virus type 1 replication initiator protein (UL9 protein) after viral infection. Proc. Natl. Acad. Sci. USA, 101, 4036–4040 (2004).
  • 24) Murai-Takebe, R., Noguchi, T., Ogura, T., Mikami, T., Yanagi, K., Inagaki, K., Ohnishi, H., Matozaki, T., and Kasuga, M., Ubiquitination-mediated regulation of biosynthesis of the adhesion receptor SHPS-1 in response to endoplasmic reticulum stress. J. Biol. Chem., 279, 11616–11625 (2004).
  • 25) Kato, A., Rouach, N., Nicoll, R. A., and Bredt, D. S., Activity-dependent NMDA receptor degradation mediated by retrotranslocation and ubiquitination. Proc. Natl. Acad. Sci. USA, 102, 5600–5605 (2005).
  • 26) Yoshida, Y., Murakami, A., Iwai, K., and Tanaka, K., A neural-specific F-box protein Fbs1 functions as a chaperone suppressing glycoprotein aggregation. J. Biol. Chem., 282, 7137–7144 (2007).
  • 27) Nelson, R. F., Glenn, K. A., Zhang, Y., Wen, H., Knutson, T., Gouvion, C. M., Robinson, B. K., Zhou, Z., Yang, B., Smith, R. J., and Paulson, H. L., Selective cochlear degeneration in mice lacking the F-box protein, Fbx2, a glycoprotein-specific ubiquitin ligase subunit. J. Neurosci., 27, 5163–5171 (2007).
  • 28) Henzl, M. T., Thalmann, I., Larson, J. D., Ignatova, E. G., and Thalmann, R., The cochlear F-box protein OCP1 associates with OCP2 and connexin 26. Hear. Res., 191, 101–109 (2004).
  • 29) Yoshida, Y., Tokunaga, F., Chiba, T., Iwai, K., Tanaka, K., and Tai, T., Fbs2 is a new member of the E3 ubiquitin ligase family that recognizes sugar chains. J. Biol. Chem., 278, 43877–43884 (2003).
  • 30) Mizushima, T., Hirao, T., Yoshida, Y., Lee, S. J., Chiba, T., Iwai, K., Yamaguchi, Y., Kato, K., Tsukihara, T., and Tanaka, K., Structural basis of sugar-recognizing ubiquitin ligase. Nat. Struct. Mol. Biol., 11, 365–370 (2004).
  • 31) Yoshida, Y., Adachi, E., Fukiya, K., Iwai, K., and Tanaka, K., Glycoprotein-specific ubiquitin ligases recognize N-glycans in unfolded substrates. EMBO Rep., 6, 239–244 (2005).
  • 32) Yoshida, Y., Expression and assay of glycoprotein-specific ubiquitin ligases. Methods Enzymol., 398, 159–169 (2005).
  • 33) Mizushima, T., Yoshida, Y., Kumanomidou, T., Hasegawa, Y., Suzuki, A., Yamane, T., and Tanaka, K., Structural basis for the selection of glycosylated substrates by SCF(Fbs1) ubiquitin ligase. Proc. Natl. Acad. Sci. USA, 104, 5777–5781 (2007).
  • 34) Hagihara, S., Totani, K., Matsuo, I., and Ito, Y., Thermodynamic analysis of interactions between N-linked sugar chains and F-box protein Fbs1. J. Med. Chem., 48, 3126–3129 (2005).
  • 35) Castellino, F., Boucher, P. E., Eichelberg, K., Mayhew, M., Rothman, J. E., Houghton, A. N., and Germain, R. N., Receptor-mediated uptake of antigen/heat shock protein complexes results in major histocompatibility complex class I antigen presentation via two distinct processing pathways. J. Exp. Med., 191, 1957–1964 (2000).
  • 36) Kovacsovics-Bankowski, M., and Rock, K. L., A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science, 267, 243–246 (1995).
  • 37) Hirao, K., Natsuka, Y., Tamura, T., Wada, I., Morito, D., Natsuka, S., Romero, P., Sleno, B., Tremblay, L. O., Herscovics, A., Nagata, K., and Hosokawa, N., EDEM3, a soluble EDEM homolog, enhances glycoprotein endoplasmic reticulum-associated degradation and mannose trimming. J. Biol. Chem., 281, 9650–9658 (2006).
  • 38) Olivari, S., Galli, C., Alanen, H., Ruddock, L., and Molinari, M., A novel stress-induced EDEM variant regulating endoplasmic reticulum-associated glycoprotein degradation. J. Biol. Chem., 280, 2424–2428 (2005).
  • 39) Mast, S. W., Diekman, K., Karaveg, K., Davis, A., Sifers, R. N., and Moremen, K. W., Human EDEM2, a novel homolog of family 47 glycosidases, is involved in ER-associated degradation of glycoproteins. Glycobiology, 15, 421–436 (2005).
  • 40) Buschhorn, B. A., Kostova, Z., Medicherla, B., and Wolf, D. H., A genome-wide screen identifies Yos9p as essential for ER-associated degradation of glycoproteins. FEBS Lett., 577, 422–426 (2004).
  • 41) Bhamidipati, A., Denic, V., Quan, E. M., and Weissman, J. S., Exploration of the topological requirements of ERAD identifies Yos9p as a lectin sensor of misfolded glycoproteins in the ER lumen. Mol. Cell, 19, 741–751 (2005).
  • 42) Kim, W., Spear, E. D., and Ng, D. T., Yos9p detects and targets misfolded glycoproteins for ER-associated degradation. Mol. Cell, 19, 753–764 (2005).
  • 43) Szathmary, R., Bielmann, R., Nita-Lazar, M., Burda, P., and Jakob, C. A., Yos9 protein is essential for degradation of misfolded glycoproteins and may function as lectin in ERAD. Mol. Cell, 19, 765–775 (2005).
  • 44) Vashist, S., and Ng, D. T., Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control. J. Cell Biol., 165, 41–52 (2004).
  • 45) Carvalho, P., Goder, V., and Rapoport, T. A., Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. Cell, 126, 361–373 (2006).
  • 46) Denic, V., Quan, E. M., and Weissman, J. S., A luminal surveillance complex that selects misfolded glycoproteins for ER-associated degradation. Cell, 126, 349–359 (2006).
  • 47) Tortorella, D., Gewurz, B. E., Furman, M. H., Schust, D. J., and Ploegh, H. L., Viral subversion of the immune system. Annu. Rev. Immunol., 18, 861–926 (2000).
  • 48) Lilley, B. N., and Ploegh, H. L., A membrane protein required for dislocation of misfolded proteins from the ER. Nature, 429, 834–840 (2004).
  • 49) Ye, Y., Shibata, Y., Yun, C., Ron, D., and Rapoport, T. A., A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature, 429, 841–847 (2004).
  • 50) Tsai, B., Ye, Y., and Rapoport, T. A., Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nat. Rev. Mol. Cell Biol., 3, 246–255 (2002).
  • 51) Loureiro, J., Lilley, B. N., Spooner, E., Noriega, V., Tortorella, D., and Ploegh, H. L., Signal peptide peptidase is required for dislocation from the endoplasmic reticulum. Nature, 441, 894–897 (2006).
  • 52) Oda, Y., Okada, T., Yoshida, H., Kaufman, R. J., Nagata, K., and Mori, K., Derlin-2 and Derlin-3 are regulated by the mammalian unfolded protein response and are required for ER-associated degradation. J. Cell Biol., 172, 383–393 (2006).
  • 53) Suzuki, T., Park, H., Hollingsworth, N. M., Sternglanz, R., and Lennarz, W. J., PNG1, a yeast gene encoding a highly conserved peptide: N-glycanase. J. Cell Biol., 149, 1039–1052 (2000).
  • 54) Hirsch, C., Blom, D., and Ploegh, H. L., A role for N-glycanase in the cytosolic turnover of glycoproteins. EMBO J., 22, 1036–1046 (2003).
  • 55) Misaghi, S., Pacold, M. E., Blom, D., Ploegh, H. L., and Korbel, G. A., Using a small molecule inhibitor of peptide: N-glycanase to probe its role in glycoprotein turnover. Chem. Biol., 11, 1677–1687 (2004).
  • 56) Nelson, R. F., Glenn, K. A., Miller, V. M., Wen, H., and Paulson, H. L., A novel route for F-box protein-mediated ubiquitination links CHIP to glycoprotein quality control. J. Biol. Chem., 281, 20242–20251 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.