1,020
Views
75
CrossRef citations to date
0
Altmetric
Original Articles

Production of 2-Phenylethanol in Roses as the Dominant Floral Scent Compound from L-Phenylalanine by Two Key Enzymes, a PLP-Dependent Decarboxylase and a Phenylacetaldehyde Reductase

, , , , , , , & show all
Pages 2408-2419 | Received 14 Feb 2007, Accepted 02 Jul 2007, Published online: 22 May 2014

  • 1) Clark, G. S., Phenetyl alcohol. Perf. Flav., 15, 37–44 (1990).
  • 2) Rusanov, K., Kovacheva, N., Vosman, B., Zhang, L., Rajapakse, S., Atanassov, A., and Atanassov, I., Microsatellite analysis of Rosa damascena Mill. accessions reveals genetic similarity between genotypes used for rose oil production and old Damask rose varieties. TAG Theor. Appl. Genet., 111, 804–809 (2005).
  • 3) Etschmann, M. M. W., Bluemke, W., Sell, D., and Schrader, J., Biotechnological production of 2-phenylethanol. Appl. Microbiol. Biotechnol., 59, 1–8 (2002).
  • 4) Bugorskii, P. S., and Zaprometov, M. N., Biosynthesis of beta-phenylethanol in rose petals. Biokhimiia, 43, 2038–2042 (1978).
  • 5) Albertazzi, E., Cardillo, R., Servi, S., and Zucchi, G., Biogeneration of 2-phenylethanol and 2-phenylethylacetate important aroma components. Biotech. Lett., 16, 491–496 (1994).
  • 6) Watanabe, S., Hayashi, K., Yagi, K., Asai, T., MacTavish, H., Picone, J., Turnbull, C., and Watanabe, N., Biogenesis of 2-phenylethanol in rose flowers: incorporation of [2H8] L-phenylalanine into 2-phenylethanol and its β-D-glucopyranoside during the flower opening of Rosa ‘Hoh-Jun’ and Rosa damascena Mill. Biosci. Biotechnol. Biochem., 66, 943–947 (2002).
  • 7) Hayashi, S., Yagi, K., Ishikawa, T., Kawasaki, M., Asai, T., Picone, J., Turnbull, C., Hiratake, J., Sakata, K., Takada, M., Ogawa, K., and Watanabe, N., Emission of 2-phenylethanol from its β-D-glucopyranoside and the biogenesis of these compounds from [2H8] L-phenylalanine in rose flowers. Tetrahedron, 60, 7005–7013 (2004).
  • 8) Wittstock, U., and Halkier, B. A., Cytochrome P450 CYP79A2 from Arabidopsis thaliana L. catalyzes the conversion of L-phenylalanine to phenylacetaldoxime in the biosynthesis of benzylglucosinolate. J. Biol. Chem., 275, 14659–14666 (2000).
  • 9) Tieman, D., Taylor, M., Schauer, N., Fernie, A. R., Hanson, A. D., and Klee, H. J., Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. PNAS, 103, 8287–8292 (2006).
  • 10) Eliot, A. C., and Kirsch, J. F., Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. Annu. Rev. Biochem., 73, 383–415 (2004).
  • 11) Bertoldi, M., Moore, P. S., Maras, B., Dominici, P., and Voltattorni, C. B., Mechanism-based inactivation of dopa decarboxylase by serotonin. J. Biol. Chem., 271, 23954–23959 (1996).
  • 12) Sakai, K., Miyasako, Y., Nagatomo, H., Watanabe, H., Wakayama, M., and Moriguchi, M., L-Ornithine decarboxylase from Hafnia alvei has a novel L-ornithine oxidase activity. J. Biochem., 122, 961–968 (1997).
  • 13) Bertoldi, M., and Voltattorni, C. B., Reaction of dopa decarboxylase with L-aromatic amino acids under aerobic and anaerobic conditions. Biochem. J., 352, 533–538 (2000).
  • 14) Bertoldi, M., and Voltattorni, C. B., Dopa decarboxylase exhibits low pH half-transaminase and high pH oxidative deaminase activities toward serotonin (5-hydroxytryptamine). Protein Sci., 10, 1178–1186 (2001).
  • 15) Kaminaga, Y., Schnepp, J., Peel, G., Kish, C. M., Ben-Nissan, G., Weiss, D., Orlova, I., Lavie, O., Rhodes, D., Wood, K., Porterfield, D. M., Cooper, A. J. L., Schloss, J. V., Pichersky, E., Vainstein, A., and Dudareva, N., Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation. J. Biol. Chem., 281, 23357–23366 (2006).
  • 16) Sakai, M., Hirata, H., Itano, H., Sayama, H., Dohra, H., Hara, M., and Watanabe, N., Biosynthesis of 2-phenylethanol, a dominant scent compound emitted from rose flowers. Abstract from TEAC 2005, Fukui, November, 2005, pp. 433–435.
  • 17) Watanabe, N., Hara, M., Dohra, H., Sakai, M., and Hirata, H., Japan Kokai Tokkyo Koho, 2007-189943 (August 2, 2007).
  • 18) Watanabe, N., Mystery of rose fragrance: biosynthesis in rose. Gendai Kagaku ( Chemistry Today, in Japanese), 420, 47–54 (2006).
  • 19) Smith, T. E., Weissbach, H., and Udenfriend, S., Studies on monoamine oxidase: the mechanism of inhibition of monoamine oxidase by iproniazid. Biochemistry, 2, 746–751 (1963).
  • 20) Guterman, I., Shalit, M., Menda, N., Piestun, D., Dafny-Yelin, M., Shalev, G., Bar, E., Davydov, O., Ovadis, M., Emanuel, M., Wang, J., Adam, Z., Pichersky, E., Lewinsohn, E., Zamir, D., Vainstein, A., and Weiss, D., Rose scent: genomics approach to discovering novel floral fragrance–related genes. Plant Cell, 14, 2325–2338 (2002).
  • 21) Yang, D., Shih, Y., and Liu, H., Chemical synthesis of stereospecifically labeled pyridoxamine 5′-phosphate. J. Org. Chem., 56, 2940–2946 (1991).
  • 22) Wolff, S. P., Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods Enzymol., 233, 182–189 (1994).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.