2,267
Views
31
CrossRef citations to date
0
Altmetric
Original Articles

Cytokine Responses of Intestinal Epithelial-Like Caco-2 Cells to Non-Pathogenic and Opportunistic Pathogenic Yeasts in the Presence of Butyric Acid

, , &
Pages 2428-2434 | Received 02 Apr 2007, Accepted 23 Jun 2007, Published online: 22 May 2014

  • 1) Haller, D., Bode, C., Hammes, W. P., Pfeifer, A. M., Schiffrin, E. J., and Blum, S., Non-pathogenic bacteria elicit a differential cytokine response by intestinal epithelial cell/leucocyte co-cultures. Gut, 47, 79–87 (2000).
  • 2) Vizoso Pinto, M. G., Schuster, T., Briviba, K., Watzl, B., Holzapfel, W. H., and Franz, C. M., Adhesive and chemokine stimulatory properties of potentially probiotic Lactobacillus strains. J. Food Prot., 70, 125–134 (2007).
  • 3) Lammers, K. M., Helwig, U., Swennen, E., Rizzello, F., Venturi, A., Caramelli, E., Kamm, M. A., Brigidi, P., Gionchetti, P., and Campieri, M., Effect of probiotic strains on interleukin 8 production by HT29/19A cells. Am. J. Gastroenterol., 97, 1182–1186 (2002).
  • 4) Hosoi, T., Hirose, R., Saegusa, S., Ametani, A., Kiuchi, K., and Kaminogawa, S., Cytokine responses of human intestinal epithelial-like Caco-2 cells to the nonpathogenic bacterium Bacillus subtilis (natto). Int. J. Food Microbiol., 82, 255–264 (2003).
  • 5) Jung, H. C., Eckmann, L., Yang, S. K., Panja, A., Fierer, J., Morzycka-Wroblewska, E., and Kagnoff, M. F., A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion. J. Clin. Invest., 95, 55–65 (1995).
  • 6) Eckmann, L., Kagnoff, M. F., and Fierer, J., Epithelial cells secrete the chemokine interleukin-8 in response to bacterial entry. Infect. Immun., 61, 4569–4574 (1993).
  • 7) Rodríguez-Juan, C., Pérez-Blas, M., Suárez-García, E., López-Suárez, J. C., Múzquiz, M., Cuadrado, C., and Martín-Villa, J. M., Lens culinaris, Phaseolus vulgaris and Vicia faba lectins specifically trigger IL-8 production by the human colon carcinoma cell line CACO-2. Cytokine, 12, 1284–1287 (2000).
  • 8) Koyama, Y., Suzuki, T., Kajiya, A., and Isemura, M., Stimulation of IL-8 production by Aralia cordate lectin in human colon carcinoma Caco-2 cells. Biosci. Biotechnol. Biochem., 69, 202–205 (2005).
  • 9) Cummings, J. H., Short chain fatty acids in the human colon. Gut, 22, 763–779 (1981).
  • 10) Cummings, J. H., Pomare, E. W., Branch, W. J., Naylor, C. P., and Macfarlane, G. T., Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut, 28, 1221–1227 (1987).
  • 11) Fusunyan, R. D., Quinn, J. J., Fujimoto, M., MacDermott, R. P., and Sanderson, I. R., Butyrate switches the pattern of chemokine secretion by intestinal epithelial cells through histone acetylation. Mol. Med., 5, 631–640 (1999).
  • 12) Fusunyan, R. D., Quinn, J. J., Ohno, Y., MacDermott, R. P., and Sanderson, I. R., Butyrate enhances interleukin (IL)-8 secretion by intestinal epithelial cells in response to IL-1β and lipopolysaccharide. Pediatr. Res., 43, 84–90 (1998).
  • 13) Harrison, L. E., Wang, Q. M., and Studzinski, G. P., Butyrate-induced G2/M block in Caco-2 colon cancer cells is associated with decreased p34cdc2 activity. Proc. Soc. Exp. Biol. Med., 222, 150–156 (1999).
  • 14) Huang, N., Katz, J. P., Martin, D. R., and Wu, G. D., Inhibition of IL-8 gene expression in Caco-2 cells by compounds which induce histone hyperacetylation. Cytokine, 9, 27–36 (1997).
  • 15) Mariadason, J. M., Velcich, A., Wilson, A. J., Augenlicht, L. H., and Gibson, P. R., Resistance to butyrate-induced cell differentiation and apoptosis during spontaneous Caco-2 cell differentiation. Gastroenterology, 120, 889–899 (2001).
  • 16) Wu, G. D., Huang, N., Wen, X., Keilbaugh, S. A., and Yang, H., High-level expression of IκB-β in the surface epithelium of the colon: in vitro evidence for an immunomodulatory role. J. Leukoc. Biol., 66, 1049–1056 (1999).
  • 17) Saegusa, S., Totsuka, M., Kaminogawa, S., and Hosoi, T., Candida albicans and Saccharomyces cerevisiae induce interleukin-8 production from intestinal epithelial-like Caco-2 cells in the presence of butyric acid. FEMS Immunol. Med. Microbiol., 41, 227–235 (2004).
  • 18) Fogh, J., Wright, W. C., and Loveless, J. D., Absence of HeLa cell contamination in 169 cell lines derived from human tumors. J. Natl. Cancer Inst., 58, 209–214 (1977).
  • 19) Kanda, T., Foucand, L., Nakamura, Y., Niot, I., Besnard, P., Fujita, M., Sakai, Y., Hatakeyama, K., Ono, T., and Fujii, H., Regulation of expression of human intestinal bile acid-binding protein in Caco-2 cells. Biochem. J., 330 (Pt 1), 261–265 (1998).
  • 20) Gerszten, R. E., Garcia-Zepeda, E. A., Lim, Y. C., Yoshida, M., Ding, H. A., Gimbrone, M. A., Jr., Luster, A. D., Luscinskas, F. W., and Rosenzweig, A., MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature, 398, 718–723 (1999).
  • 21) Godaly, G., Proudfoot, A. E., Offord, R. E., Svanborg, C., and Agace, W. W., Role of epithelial interleukin-8 (IL-8) and neutrophil IL-8 receptor A in Escherichia coli-induced transuroepithelial neutrophil migration. Infect. Immun., 65, 3451–3456 (1997).
  • 22) Besong, S., Jackson, J. A., Hicks, C. L., and Hemken, R. W., Effects of a supplemental liquid yeast product on feed intake, ruminal profiles, and yield, composition, and organoleptic characteristics of milk from lactating Holstein cows. J. Dairy Sci., 79, 1654–1658 (1996).
  • 23) Dann, H. M., Drackley, J. K., McCoy, G. C., Hutjens, M. F., and Garrett, J. E., Effects of yeast culture (Saccharomyces cerevisiae) on prepartum intake and postpartum intake and milk production of Jersey cows. J. Dairy Sci., 83, 123–127 (2000).
  • 24) Czerucka, D., and Rampal, P., Experimental effects of Saccharomyces boulardii on diarrheal pathogens. Microbes Infect., 4, 733–739 (2002).
  • 25) Yoshida, Y., Yokoi, W., Ohishi, K., Ito, M., Naito, E., and Sawada, H., Effects of the cell wall of Kluyveromyces marxianus YIT 8292 on the plasma cholesterol and fecal sterol excretion in rats fed on a high-cholesterol diet. Biosci. Biotechnol. Biochem., 69, 714–723 (2005).
  • 26) Yoshida, Y., Yokoi, W., Wada, Y., Ohishi, K., Ito, M., and Sawada, H., Potent hypocholesterolemic activity of the yeast Kluyveromyces marxianus YIT 8292 in rats fed a high cholesterol diet. Biosci. Biotechnol. Biochem., 68, 1185–1192 (2004).
  • 27) Underhill, D. M., Ozinsky, A., Hajjar, A. M., Stevens, A., Wilson, C. B., Bassetti, M., and Aderem, A., The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature, 401, 811–815 (1999).
  • 28) Ozinsky, A., Underhill, D. M., Fontenot, J. D., Hajjar, A. M., Smith, K. D., Wilson, C. B., Schroeder, L., and Aderem, A., The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc. Natl. Acad. Sci. USA, 97, 13766–13771 (2000).
  • 29) Tada, H., Nemoto, E., Shimauchi, H., Watanabe, T., Mikami, T., Matsumoto, T., Ohno, N., Tamura, H., Shibata, K., Akashi, S., Miyake, K., Sugawara, S., and Takada, H., Saccharomyces cerevisiae- and Candida albicans-derived mannan induced production of tumor necrosis factor alpha by human monocytes in a CD14- and Toll-like receptor 4-dependent manner. Microbiol. Immunol., 46, 503–512 (2002).
  • 30) Brown, G. D., and Gordon, S., Immune recognition: a new receptor for β-glucans. Nature, 413, 36–37 (2001).
  • 31) Brown, G. D., Herre, J., Williams, D. L., Willment, J. A., Marshall, A. S., and Gordon, S., Dectin-1 mediates the biological effects of β-glucans. J. Exp. Med., 197, 1119–1124 (2003).
  • 32) Cross, C. E., Collins, H. L., and Bancroft, G. J., CR3-dependent phagocytosis by murine macrophages: different cytokines regulate ingestion of a defined CR3 ligand and complement-opsonized Cryptococcus neoformans. Immunology, 91, 289–296 (1997).
  • 33) Ross, G. D., Cain, J. A., Myones, B. L., Newman, S. L., and Lachmann, P. J., Specificity of membrane complement receptor type three (CR3) for β-glucans. Complement, 4, 61–74 (1987).
  • 34) Yamamoto, Y., Klein, T. W., and Friedman, H., Involvement of mannose receptor in cytokine interleukin-1β (IL-1β), IL-6, and granulocyte-macrophage colony-stimulating factor responses, but not in chemokine macrophage inflammatory protein 1β (MIP-1β), MIP-2, and KC responses, caused by attachment of Candida albicans to macrophages. Infect. Immun., 65, 1077–1082 (1997).
  • 35) Hazen, K. C., New and emerging yeast pathogens. Clin. Microbiol. Rev., 8, 462–478 (1995).
  • 36) Chaffin, W. L., López-Ribot, J. L., Casanova, M., Gozalbo, D., and Martínez, J. P., Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol. Mol. Biol. Rev., 62, 130–180 (1998).
  • 37) Cutler, J. E., Putative virulence factors of Candida albicans. Annu. Rev. Microbiol., 45, 187–218 (1991).
  • 38) Jouault, T., Delaunoy, C., Sendid, B., Ajana, F., and Poulain, D., Differential humoral response against α- and β-linked mannose residues associated with tissue invasion by Candida albicans. Clin. Diagn. Lab. Immunol., 4, 328–333 (1997).
  • 39) Ramanan, N., and Wang, Y., A high-affinity iron permease essential for Candida albicans virulence. Science, 288, 1062–1064 (2000).
  • 40) Mostefaoui, Y., Bart, C., Frenette, M., and Rouabhia, M., Candida albicans and Streptococcus salivarius modulate IL-6, IL-8, and TNF-α expression and secretion by engineered human oral mucosa cells. Cell Microbiol., 6, 1085–1096 (2004).
  • 41) Steele, C., and Fidel, P. L., Jr., Cytokine and chemokine production by human oral and vaginal epithelial cells in response to Candida albicans. Infect. Immun., 70, 577–583 (2002).
  • 42) Dongari-Bagtzoglou, A., and Kashleva, H., Granulocyte-macrophage colony-stimulating factor responses of oral epithelial cells to Candida albicans. Oral Microbiol. Immunol., 18, 165–170 (2003).
  • 43) Kano, R., Cytokine production and dermatophytosis. Nippon Ishinkin Gakkai Zasshi (in Japanese), 45, 131–136 (2004).
  • 44) Hara, A., Hibi, T., Yoshioka, M., Toda, K., Watanabe, N., Hayashi, A., Iwao, Y., Saito, H., Watanabe, T., and Tsuchiya, M., Changes of proliferative activity and phenotypes in spontaneous differentiation of a colon cancer cell line. Jpn. J. Cancer Res., 84, 625–632 (1993).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.