439
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Sex Pheromone Production in the Silkworm, Bombyx mori, Is Mediated by Store-Operated Ca2+ Channels

, , &
Pages 1993-2001 | Received 02 Apr 2007, Accepted 18 May 2007, Published online: 22 May 2014

  • 1) Jurenka, R. A., Biochemistry of female moth sex pheromones. In “Insect Pheromone Biochemistry and Molecular Biology,” eds. Blomquist, G. J., and Vogt, R. G., Elsevier Academic Press, Oxford, pp. 53–80 (2003).
  • 2) Raina, A., Jaffe, K., Kempe, T. G., Keim, P., Blacher, R. W., Fales, H. M., Riley, C. T., Klun, J. A., Ridgway, R. L., and Hayes, D. K., Identification of a neuropeptide hormone that regulates sex pheromone production in female moths. Science, 244, 796–798 (1989).
  • 3) Kitamura, A., Nagasawa, H., Kataoka, H., Inoue, T., Matsumoto, S., Ando, T., and Suzuki, A., Amino acid sequence of pheromone-biosynthesis-activating neuropeptide (PBAN) of the silkworm, Bombyx mori. Biochem. Biophys. Res. Commun., 163, 520–526 (1989).
  • 4) Rafaeli, A., and Jurenka, R. A., PBAN regulation of pheromone biosynthesis in female moths. In “Insect Pheromone Biochemistry and Molecular Biology,” eds. Blomquist, G. J., and Vogt, R. G., Elsevier Academic Press, Oxford, pp. 107–136 (2003).
  • 5) Hull, J. J., Ohnishi, A., Moto, K., Kawasaki, Y., Kurata, R., Suzuki, M. G., and Matsumoto, S., Cloning and characterization of the pheromone biosynthesis activating neuropeptide receptor from the silkmoth, Bombyx mori: significance of the carboxyl terminus in receptor internalization. J. Biol. Chem., 279, 51500–51507 (2004).
  • 6) Ohnishi, A., Hull, J. J., and Matsumoto, S., Targeted disruption of genes in the Bombyx mori sex pheromone biosynthetic pathway. Proc. Natl. Acad. Sci. USA, 103, 4398–4403 (2006).
  • 7) Choi, M. Y., Fuerst, E. J., Rafaeli, A., and Jurenka, R., Identification of a G protein-coupled receptor for pheromone biosynthesis activating neuropeptide from pheromone glands of the moth Helicoverpa zea. Proc. Natl. Acad. Sci. USA, 100, 9721–9726 (2003).
  • 8) Rafaeli, A., Neuroendocrine control of pheromone biosynthesis in moths. Int. Rev. Cytol., 213, 49–91 (2002).
  • 9) Jurenka, R. A., Jacquin, E., and Roelofs, W. L., Stimulation of pheromone biosynthesis in the moth Helicoverpa zea: action of a brain hormone on pheromone glands involves Ca2+ and cAMP as second messengers. Proc. Natl. Acad. Sci. USA, 88, 8621–8625 (1991).
  • 10) Jurenka, R. A., Signal transduction in the stimulation of sex pheromone biosynthesis in moths. Arch. Insect Biochem. Physiol., 33, 245–258 (1996).
  • 11) Hull, J. J., Ohnishi, A., and Matsumoto, S., Regulatory mechanisms underlying pheromone biosynthesis activating neuropeptide (PBAN)-induced internalization of the Bombyx mori PBAN receptor. Biochem. Biophys. Res. Commun., 334, 69–78 (2005).
  • 12) Ozawa, R. A., Ando, T., Nagasawa, H., Kataoka, H., and Suzuki, A., Reduction of the acyl group: the critical step in bombykol biosynthesis that is regulated in vitro by the neuropeptide hormone in the pheromone gland of Bombyx mori. Biosci. Biotechnol. Biochem., 57, 2144–2147 (1993).
  • 13) Eltahlawy, H., Buckner, J. S., and Foster, S. P., Evidence for two-step regulation of pheromone biosynthesis by the pheromone biosynthesis-activating neuropeptide in the moth Heliothis virescens. Arch. Insect Biochem. Physiol., 64, 120–130 (2007).
  • 14) Jurenka, R. A., Jacquin, E., and Roelofs, W. L., Control of the pheromone biosynthetic pathway in Helicoverpa zea by the pheromone biosynthesis activating neuropeptide (PBAN). Arch. Insect Biochem. Physiol., 17, 81–91 (1991).
  • 15) Rafaeli, A., Soroker, V., Kamensky, B., and Raina, A. K., Action of pheromone biosynthesis activating neuropeptide on in vitro pheromone glands of Heliothis armigera females. J. Insect Physiol., 36, 641–646 (1990).
  • 16) Hull, J. J., Kajigaya, R., Imai, K., and Matsumoto, S., The Bombyx mori sex pheromone biosynthetic pathway is not mediated by cAMP. J. Insect Physiol., in press.
  • 17) Berridge, M. J., Lipp, P., and Bootman, M. D., The versatility and universality of calcium signaling. Nat. Rev. Mol. Cell. Biol., 1, 11–21 (2000).
  • 18) Lacinova, L., Voltage-dependent calcium channels. Gen. Physiol. Biophys., 24, 1–78 (2005).
  • 19) Parekh, A. B., and Putney, J. W., Jr., Store-operated calcium channels. Physiol. Rev., 85, 757–810 (2005).
  • 20) Hardie, R. C., TRP channels and lipids: from Drosophila to mammalian physiology. J. Physiol., 578, 9–24 (2007).
  • 21) Shuttleworth, T. J., Thompson, J. L., and Mignen, O., ARC channels: a novel pathway for receptor-activated calcium entry. Physiology (Bethesda), 19, 355–361 (2004).
  • 22) Ozawa, R., and Matsumoto, S., Intracellular signal transduction of PBAN action in the silkworm, Bombyx mori: involvement of acyl CoA reductase. Insect Biochem. Mol. Biol., 26, 259–265 (1996).
  • 23) Fonagy, A., Matsumoto, S., Uchiumi, K., Orikasa, C., and Mitsui, T., Action of pheromone biosynthesis activating neuropeptide on pheromone glands of Bombyx mori and Spodoptera litura. J. Pest. Sci., 17, 47–54 (1992).
  • 24) Matsumoto, S., Kitamura, A., Nagasawa, H., Kataoka, H., Orikasa, C., Mitsui, T., and Suzuki, A., Functional diversity of a neurohormone produced by the suboesophageal ganglion: molecular identity of melanization and reddish colouration hormone and pheromone biosynthesis activating neuropeptide. J. Insect Physiol., 36, 427–432 (1990).
  • 25) Fonagy, A., Yokoyama, N., and Matsumoto, S., Physiological status and change of cytoplasmic lipid droplets in the pheromone-producing cells of the silkmoth, Bombyx mori (Lepidoptera, Bombycidae). Arthropod Struct. Develop., 30, 113–123 (2001).
  • 26) Tozzi, A., Bengtson, C. P., Longone, P., Carignani, C., Fusco, F. R., Bernardi, G., and Mercuri, N. B., Involvement of transient receptor potential-like channels in responses to mGluR-I activation in midbrain dopamine neurons. Eur. J. Neurosci., 18, 2133–2145 (2003).
  • 27) Ma, H. T., Patterson, R. L., van Rossum, D. B., Birnbaumer, L., Mikoshiba, K., and Gill, D. L., Requirement of the inositol trisphosphate receptor for activation of store-operated Ca2+ channels. Science, 287, 1647–1651 (2000).
  • 28) Basora, N., Boulay, G., Bilodeau, L., Rousseau, E., and Payet, M. D., 20-hydroxyeicosatetraenoic acid (20-HETE) activates mouse TRPC6 channels expressed in HEK293 cells. J. Biol. Chem., 278, 31709–31716 (2003).
  • 29) Thebault, S., Zholos, A., Enfissi, A., Slomianny, C., Dewailly, E., Roudbaraki, M., Parys, J., and Prevarskaya, N., Receptor-operated Ca2+ entry mediated by TRPC3/TRPC6 proteins in rat prostate smooth muscle (PS1) cell line. J. Cell. Physiol., 204, 320–328 (2005).
  • 30) Holmes, A. M., Roderick, H. L., McDonald, F., and Bootman, M. D., Interaction between store-operated and arachidonate-activated calcium entry. Cell Calcium, 47, 1–12 (2007).
  • 31) Richieri, G. V., Ogata, R. T., and Kleinfeld, A. M., A fluorescently labeled intestinal fatty acid binding protein. Interactions with fatty acids and its use in monitoring free fatty acids. J. Biol. Chem., 267, 23495–23501 (1992).
  • 32) Peier, A. M., Reeve, A. J., Andersson, D. A., Moqrich, A., Earley, T. J., Hergarden, A. C., Story, G. M., Colley, S., Hogenesch, J. B., McIntyre, P., Bevan, S., and Patapoutian, A., A heat-sensitive TRP channel expressed in keratinocytes. Science, 296, 2046–2049 (2002).
  • 33) Matsumoto, S., Fonagy, A., Yamamoto, M., Wang, F., Yokoyama, N., Esumi, Y., and Suzuki, Y., Chemical characterization of cytoplasmic lipid droplets in the pheromone-producing cells of the silkmoth, Bombyx mori. Insect Biochem. Mol. Biol., 32, 1447–1455 (2002).
  • 34) Singh, B. B., Liu, X., Tang, J., Zhu, M. X., and Ambudkar, I. S., Calmodulin regulates Ca(2+)-dependent feedback inhibition of store-operated Ca(2+) influx by interaction with a site in the C terminus of TrpC1. Mol. Cell, 9, 739–750 (2002).
  • 35) Scott, K., Sun, Y., Beckingham, K., and Zuker, C. S., Calmodulin regulation of Drosophila light-activated channels and receptor function mediates termination of the light response in vivo. Cell, 91, 375–383 (1997).
  • 36) Choi, M. Y., and Jurenka, R. A., PBAN stimulation of pheromone biosynthesis by inducing calcium influx in pheromone glands of Helicoverpa zea. J. Insect Physiol., 50, 555–560 (2004).
  • 37) Rosay, P., Davies, S. A., Yu, Y., Sozen, A., Kaiser, K., and Dow, J. A. T., Cell-type specific calcium signalling in a Drosophila epithelium. J. Cell Sci., 110, 1683–1692 (1997).
  • 38) Dedos, S. G., Wicher, D., Fugo, H., and Birkenbeil, H., Regulation of capacitative Ca2+ entry by prothoracicotropic hormone in the prothoracic glands of the silkworm, Bombyx mori. J. Exp. Zoolog. A Comp. Exp. Biol., 303, 101–112 (2005).
  • 39) Rafaeli, A., Pheromonotropic stimulation of moth pheromone gland cultures in vitro. Arch. Insect Biochem. Physiol., 25, 287–299 (1994).
  • 40) Smyth, J. T., Dehaven, W. I., Jones, B. F., Mercer, J. C., Trebak, M., Vazquez, G., and Putney, J. W., Jr., Emerging perspectives in store-operated Ca(2+) entry: roles of Orai, Stim and TRP. Biochim. Biophys. Acta, 1763, 1147–1160 (2006).
  • 41) Rafaeli, A., and Gileadi, C., Down regulation of pheromone biosynthesis: cellular mechanisms of pheromonostatic responses. Insect Biochem. Mol. Biol., 26, 797–807 (1996).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.