296
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Functional Analysis of A Pyoverdine Synthetase from Pseudomonas sp. MIS38

, , &
Pages 2002-2009 | Received 04 Apr 2007, Accepted 30 May 2007, Published online: 22 May 2014

  • 1) Sieber, S. A., and Marahiel, M. A., Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem. Rev., 105, 715–738 (2005).
  • 2) Gulick, A. M., Starai, V. J., Horswill, A. R., Homick, K. M., and Escalante-Semerena, J. C., The 1.75 A crystal structure of acetyl-CoA synthetase bound to adenosine-5′-propylphosphate and coenzyme A. Biochemistry, 42, 2866–2873 (2003).
  • 3) Marahiel, M. A., Stachelhaus, T., and Mootz, H. D., Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem. Rev., 97, 2651–2673 (1997).
  • 4) Buczek, O., Yoshikami, D., Bulaj, G., Jimenez, E. C., and Olivera, B. M., Post-translational amino acid isomerization: a functionally important D-amino acid in an excitatory peptide. J. Biol. Chem., 280, 4247–4253 (2005).
  • 5) Roongsawang, N., Hase, K., Haruki, M., Imanaka, T., Morikawa, M., and Kanaya, S., Cloning and characterization of the gene cluster encoding arthrofactin synthetase from Pseudomonas sp. MIS38. Chem. Biol., 10, 869–880 (2003).
  • 6) Guenzi, E., Galli, G., Grgurina, I., Gross, D. C., and Grandi, G., Characterization of the syringomycin synthetase gene cluster: a link between prokaryotic and eukaryotic peptide synthetases. J. Biol. Chem., 273, 32857–32863 (1998).
  • 7) Scholz-Schroeder, B. K., Soule, J. D., and Gross, D. C., The sypA, sypS, and sypC synthetase genes encode twenty-two modules involved in the nonribosomal peptide synthesis of syringopeptin by Pseudomonas syringae pv. syringae B301D. Mol. Plant-Microbe Interact., 16, 271–280 (2003).
  • 8) Roongsawang, N., Lim, S. P., Washio, K., Takano, K., Kanaya, S., and Morikawa, M., Phylogenetic analysis of condensation domains in the nonribosomal peptide synthetases. FEMS Microbiol. Lett., 252, 143–151 (2005).
  • 9) Balibar, C. J., Vaillancourt, F. H., and Walsh, C. T., Generation of D amino acid residues in assembly of arthrofactin by dual condensation/epimerization domains. Chem. Biol., 12, 1189–1200 (2005).
  • 10) Budzikiewicz, H., Siderophores of fluorescent pseudomonads. Z. Naturforsch., 52c, 713–720 (1997).
  • 11) Meyer, J. M., Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch. Microbiol., 174, 135–142 (2000).
  • 12) Morikawa, M., Daido, H., Takao, T., Murata, S., Shimonishi, Y., and Imanaka, T., A new lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS38. J. Bacteriol., 175, 6459–6466 (1993).
  • 13) Bartolome, B., Jubete, Y., Martinez, E., and de la Cruz, F., Construction and properties of a family of pACYC184-derived cloning vectors compatible with pBR322 and its derivatives. Gene, 102, 75–78 (1991).
  • 14) Ackerley, D. F., and Lamont, I. L., Characterization and genetic manipulation of peptide synthetases in Pseudomonas aeruginosa PAO1 in order to generate novel pyoverdines. Chem. Biol., 11, 971–980 (2004).
  • 15) Roongsawang, N., Washio, K., and Morikawa, M., In vivo characterization of tandem C-terminal thioesterase domains in arthrofactin synthetase. ChemBioChem, 8, 501–512 (2007).
  • 16) Kilz, S., Lenz, C., Fuchs, R., and Budzikiewicz, H., A fast screening method for the identifcation of siderophores from fluorescent spp. Pseudomonas by liquid chromatography/electrospray mass spectrometry. J. Mass Spectrom., 34, 281–290 (1999).
  • 17) Marmur, J., Procedure for isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol., 3, 208–218 (1961).
  • 18) Sambrook, J., and Russel, D. W., “Molecular Cloning, a Laboratory Manual” 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2001).
  • 19) Morikawa, M., Hirata, Y., and Imanaka, T., A study on the structure-function relationship of lipopeptide biosurfactants. Biochim. Biophys. Acta, 1488, 211–218 (2000).
  • 20) Budzikiewicz, H., Siderophores of the Pseudomonadaceae sensu stricto (Fluorescent and Non-fluorescent Pseudomonas spp.). Fortschr. Chem. Org. Naturst., 87, 81–237 (2004).
  • 21) Du, L., Sanchez, C., Chen, M., Edwards, D. J., and Shen, B., The biosynthetic gene cluster for the antitumor drug bleomycin from Streptomyces verticillus ATCC15003 supporting functional interactions between non-ribosomal peptide synthetases and a polyketide synthase. Chem. Biol., 7, 623–642 (2000).
  • 22) Mossialos, D., Ochsner, U., Baysse, C., Chablain, P., Pirnay, J. P., Koedam, N., Budzikiewicz, H., Uría Fernández, D., Schäfer, M., Ravel, J., and Cornelis, P., Identification of new, conserved, nonribosomal peptide synthetases from fluorescent pseudomonads involved in the biosynthesis of the siderophore pyoverdine. Mol. Microbiol., 45, 1673–1685 (2002).
  • 23) Conti, E., Stachelhaus, T., Marahiel, M. A., and Brick, P., Structural basis for the activation of phenylalanine in the nonribosomal biosynthesis of gramicidin S. EMBO J., 16, 4174–4183 (1997).
  • 24) Challis, G. L., Ravel, J., and Townsend, C. A., Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem. Biol., 7, 211–224 (2000).
  • 25) Steller, S., Vollenbroich, D., Leenders, F., Stein, T., Conrad, B., Hofemeister, J., Jacques, P., Thonart, P., and Vater, J., Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3. Chem. Biol., 6, 31–41 (1999).
  • 26) Böckmann, M., Taraz, K., and Budzikiewicz, H., Biogenesis of the pyoverdine chromophore. Z. Naturforsch., 52c, 319–324 (1997).
  • 27) Poole, K., and McKay, G. A., Iron acquisition and its control in Pseudomonas aeruginosa: many roads lead to Rome. Front. Biosci., 8, d661–686 (2003).
  • 28) Ravel, J., and Cornelis, P., Genomics of pyoverdine-mediated iron uptake in pseudomonas. Trends Microbiol., 11, 195–200 (2003).
  • 29) Yin, X., and Zabriskie, T. M., The enduracidin biosynthetic gene cluster from Streptomyces fungicidicus. Microbiology, 152, 2969–2983 (2006).
  • 30) Cortese, M. S., Caplan, A. B., and Crawford, R. L., Structural, functional, and evolutionary analysis of moeZ, a gene encoding an enzyme required for the synthesis of the Pseudomonas metabolite, pyridine-2,6-bis(thiocarboxylic acid). BMC Evol. Biol., 2, 8 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.