283
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

Asaia lannaensis sp. nov., a New Acetic Acid Bacterium in the Alphaproteobacteria

, , , , , , , & show all
Pages 666-671 | Received 19 Apr 2007, Accepted 21 Nov 2007, Published online: 22 May 2014

  • 1) Yamada, Y., Katsura, K., Kawasaki, H., Widyastuti, Y., Saono, S., Seki, T., Uchimura, T., and Komagata, K., Asaia bogorensis gen. nov., sp. nov., an unusual acetic acid bacterium in the α-Proteobacteria. Int. J. Syst. Evol. Microbiol., 50, 823–829 (2000).
  • 2) Katsura, K., Kawasaki, H., Potacharoen, W., Saono, S., Seki, T., Yamada, Y., Uchimura, T., and Komagata, K., Asaia siamensis sp. nov., an acetic acid bacterium in the α-Proteobacteria. Int. J. Syst. Evol. Microbiol., 51, 559–563 (2001).
  • 3) Yukphan, P., Potacharoen, W., Tanasupawat, S., Tanticharoen, M., and Yamada, Y., Asaia krungthepensis sp. nov., an acetic acid bacterium in the α-Proteobacteria. Int. J. Syst. Evol. Microbiol., 54, 313–316 (2004).
  • 4) Yamada, Y., Okada, Y., and Kondo, K., Isolation and characterization of “polarly flagellated intermediate strains” in acetic acid bacteria. J. Gen. Appl. Microbiol., 22, 237–245 (1976).
  • 5) Yamada, Y., Hosono, R., Lisdiyanti, P., Widyastuti, Y., Saono, S., Uchimura, T., and Komagata, K., Identification of acetic acid bacteria isolated from Indonesian sources, especially of isolates classified in the genus Gluconobacter. J. Gen. Appl. Microbiol., 45, 23–28 (1999).
  • 6) Yukphan, P., Malimas, T., Takahashi, M., Kaneyasu, M., Potacharoen, W., Tanasupawat, S., Nakagawa, Y., Tanticharoen, M., and Yamada, Y., Identification of strains assigned to the genus Asaia Yamada et al. 2000 based on 16S rDNA restriction analysis. J. Gen. Appl. Microbiol., 52, 241–247 (2006).
  • 7) Yukphan, P., Malimas, T., Takahashi, M., Potacharoen, W., Busabun, T., Tanasupawat, S., Nakagawa, Y., Tanticharoen, M., and Yamada, Y., Re-identification of Gluconobacter strains based on restriction analysis of 16S-23S rDNA internal transcribed spacer regions. J. Gen. Appl. Microbiol., 50, 189–195 (2004).
  • 8) Yukphan, P., Malimas, T., Potacharoen, W., Tanasupawat, S., Tanticharoen, M., and Yamada, Y., Identification of strains assigned to the genus Asaia Yamada et al. 2000 based on restriction analysis of 16S-23S rDNA internal transcribed spacer regions. J. Gen. Appl. Microbiol., 52, 55–62 (2006).
  • 9) Malimas, T., Yukphan, P., Takahashi, M., Potacharoen, W., Tanasupawat, S., Nakagawa, Y., Tanricharoen, M., and Yamada, Y., Heterogeneity of strains assigned to Gluconobacter frateurii Mason and Claus 1989 based on restriction analysis of 16S-23S rDNA internal transcribed spacer regions. Biosci. Biotechnol. Biochem., 70, 684–690 (2006).
  • 10) Yukphan, P., Malimas, T., Takahashi, M., Kaneyasu, M., Potacharoen, W., Tanasupawat, S., Nakagawa, Y., Tanticharoen, M., and Yamada, Y., Phylogenetic relationships between the genera Swaminathania and Asaia, with reference to the genera Kozakia and Neoasaia, based on 16S rDNA, 16S-23S rDNA ITS, and 23S rDNA sequences. J. Gen. Appl. Microbiol., 52, 289–294 (2006).
  • 11) Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G., The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res., 25, 4876–4882 (1997).
  • 12) Brosius, J., Dull, T. J., Sleeter, D. D., and Noller, H. F., Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J. Mol. Biol., 148, 107–127 (1981).
  • 13) Kimura, M., A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol., 16, 111–120 (1980).
  • 14) Saitou, N., and Nei, M., The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4, 406–425 (1987).
  • 15) Felsenstein, J., Evolutional trees from DNA sequences: a maximum likelihood approach. J. Mol. Biol., 17, 368–376 (1981).
  • 16) Felsenstein, J., Parsimony in systematics: biological and statistical issues. Annu. Rev. Ecol. Syst., 14, 313–333 (1983).
  • 17) Felsenstein, J., Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–791 (1985).
  • 18) Marmur, J., A procedure for isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol., 3, 208–218 (1961).
  • 19) Saito, H., and Miura, K., Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim. Biophys. Acta, 72, 619–629 (1963).
  • 20) Ezaki, T., Yamamoto, N., Ninomiya, K., Suzuki, S., and Yabuuchi, E., Transfer of Peptococcus indolicus, Peptococcus asaccharolyticus, Peptococcus prevotii, and Peptococcus magnus to the genus Peptostreptococcus and proposal of Peptostreptococcus tetradius sp. nov. Int. J. Syst. Bacteriol., 33, 683–698 (1983).
  • 21) Tamaoka, J., and Komagata, K., Determination of DNA base composition by reversed-phase high performance liquid chromatography. FEMS Microbiol. Lett., 25, 125–128 (1984).
  • 22) Ezaki, T., Hashimoto, Y., and Yabuuchi, E., Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol., 39, 224–229 (1989).
  • 23) Verlander, C. P., Detection of horseradish peroxidase by colorimetry. In “Nonisotopic DNA Probe Techniques,” ed. Kricka, L. J., Academic Press, New York, pp. 185–201 (1992).
  • 24) Yamada, Y., Aida, K., and Uemura, T., Enzymatic studies on the oxidation of sugar and sugar alcohol. V. Ubiquinone of acetic acid bacteria and its relation to classification of Gluconobacter and Acetobacter, especially of the so-called intermediate strains. J. Gen. Appl. Microbiol., 15, 186–196 (1969).
  • 25) Asai, T., Iizuka, H., and Komagata, K., The flagellation and taxonomy of genera Gluconobacter and Acetobacter with reference to the existence of intermediate strains. J. Gen. Appl. Microbiol., 10, 95–126 (1964).
  • 26) Loganathan, P., and Nair, S., Swaminathania salitolerans gen. nov., sp. nov., a salt-tolerant, nitrogen-fixing and phosphate-solubilizing bacterium from wild rice (Porteresia coarctata Tateoka). Int. J. Syst. Evol. Microbiol., 54, 1185–1190 (2004).
  • 27) Huong, V. T. L., Malimas, T., Yukphan, P., Potacharoen, W., Tanasupawat, S., Loan, L. T. T., Tanticharoen, M., and Yamada, Y., Identification of Thai isolates assigned to the genus Asaia based on 16S rDNA restriction analysis. J. Gen. Appl. Microbiol., 53, 259–264 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.