197
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Plant-Type N-Glycans Containing Fucose and Xylose in Bryophyta (Mosses) and Tracheophyta (Ferns)

Pages 2893-2904 | Received 23 Apr 2007, Accepted 21 Sep 2007, Published online: 22 May 2014

  • 1) Ishihara, H., Takahashi, N., Oguri, S., and Tejima, S., Complete structure of the carbohydrate moiety of stem bromelein. J. Biol. Chem., 254, 10715–10719 (1979).
  • 2) Fitchette, A. C., Cabanes-Macheteau, M., Marvin, L., Martin, B., Satiat-Jeunemaitre, B., Gomord, V., Crooks, K., Lerouge, P., Faye, L., and Hawes, C., Biosynthesis and immunolocalization of Lewis a-containing N-glycans in the plant cell. Plant Physiol., 121, 333–344 (1999).
  • 3) Maeda, M., Kamamoto, M., Yamamoto, S., Kimura, M., and Kimura, Y., Glycoform analysis of Japanese cedar pollen allergen, Cry j1. Biosci. Biotechnol. Biochem., 69, 1700–1705 (2005).
  • 4) Kimura, Y., Kamamoto, M., Maeda, M., Okanao, M., Yokoyama, M., and Kino, K., Occurrence of Lewis a epitope in N-glycans of a glycoallergen, Jun a1, from mountain cedar (Juniperus ashei) pollen. Biosci. Biotechnol. Biochem., 69, 137–144 (2005).
  • 5) Wilson, I. B., Zeleny, R., Kolarich, D., Staudacher, E., Stroop, C. J., Kamerling, J. P., and Altmann, F., Analysis of Asn-linked glycans from vegetable foodstuffs: widespread occurrence of Lewis a, core α-1,3-linked fucose and xylose substitutions. Glycobiology, 11, 261–274 (2001).
  • 6) Lerouge, P., Cabanes-Macheteau, M., Rayyon, C., Fischentte-Lainé, A., Gomord, V., and Faye, L., N-Glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol. Biol., 38, 31–48 (1998).
  • 7) Boisson, M., Gomord, V., Audran, C., Berger, N., Dubreucq, B., Granier, F., Lerouge, P., Faye, L., Caboche, M., and Lepiniec, L., Arabidopsis glucosidase I mutants reveal a critical role of N-glycan trimming in seed development. EMBO J., 20, 1010–1019 (2001).
  • 8) Gillmor, C. S., Poindexter, P., Lorieau, J., Palcic, M. M., and Somerville, C., α-Glucosidase I is required for cellulose biosynthesis and morphogenesis in Arabidopsis. Cell Biol., 156, 1003–1013 (2002).
  • 9) Burn, J. E., Hurley, U. A., Birch, R. J., Arioli, T., Cork, A., and Williamson, R. E., The cellulose-deficient Arabidopsis mutant rsw3 is defective in a gene encoding a putative glucosidase II, an enzyme processing N-glycans during ER quality control. Plant J., 32, 949–960 (2002).
  • 10) Mega, T., Glucose trimming of N-glycan in endoplasmic reticulum is indispensable for the growth of Raphanus sativus seedling (kaiware radish). Biosci. Biotechnol. Biochem., 69, 1353–1364 (2005).
  • 11) von Schaewen, A., Strum, A., O’Neil, J., and Chrispeels, M., Isolation of a mutant Arabidopsis plant that lacks N-acetylglucosaminyl transferase I and is unable to synthesize Golgi-modified complex N-linked glycans. J. Plant Physiol., 102, 1109–1118 (1993).
  • 12) Strasser, R., Altmann, F., Mucha, J., Mach, L., Glossl, J., and Steinkellner, H., Generation of Arabidopsis thaliana plants with complex N-glycans lacking β-1,2-linked xylose and core α-1,3-linked fucose. FEBS Lett., 561, 132–136 (2004).
  • 13) Koprivova, A., Stemmer, C., Altmann, F., Hoffmann, A., Kopriva, S., Gorr, G., Reski, R., and Decker, E. L., Targeted knockouts of Physcomitrella lacking plant-specific immunogenic N-glycans. Plant Biotechnol. J., 2, 517–523 (2004).
  • 14) Mega, T., Conversion of N-glycan structures in the root of Raphanus sativus with several glycosidase inhibitors. J. Biochem., 136, 525–531 (2004).
  • 15) Viëtor, R., Louterier-Bourhis, C., Fichette, A. N., Margeric, P., Gonneau, M., Faye, L., and Lerouge, P., Protein N-glycosylation is similar in the moss Physcomitrella patens and in higher plants. Planta, 218, 269–275 (2003).
  • 16) Horstmann, V., Huether, C. M., Jost, W., Reski, R., and Decker, E. L., Quantitative promoter analysis in Physcomitrella patens: a set of plant vectors activating gene expression within three orders of magnitude. BMC Biotechnol., 4, 1–13 (2004).
  • 17) Makino, Y., Shimazaki, A., Omichi, K., Odani, S., and Hase, S., Processing pathway deduced from the structures of N-glycans in Carica papaya. J. Biochem., 127, 1121–1126 (2000).
  • 18) Hase, S., Natsuka, S., Oku, H., and Ikenaka, T., Identification method for twelve oligomannose-type sugar chains thought to be processing intermediates of glycoproteins. Anal. Biochem., 167, 321–326 (1987).
  • 19) Yanagida, K., Ogawa, H., Omichi, K., and Hase, S., Introduction of a new scale into reversed-phase high-performance liquid chromatography of pyridylamino sugar chains for structural assignment. J. Chromatogr. A., 800, 187–198 (1998).
  • 20) Koiwa, H., Li, F., McCully, M. G., Mendoza, I., Koizumi, N., Manabe, Y., Nakagawa, Y., Zhu, J., Rusb, A., Pardo, J. M., Bressan, R. A., and Hasegawa, P. M., The STT3a subunit isoform of the Arabidopsis oligosaccharyltransferase controls adaptive responses to salt/osmotic stress. Plant Cell, 15, 2273–2284 (2003).
  • 21) Nishiyama, T., Fujita, T., Shin-I, T., Seki, M., Nishide, H., Uchiyama, I., Kamiya, A., Carninci, P., Hayashizaki, Y., Shinozaki, K., Kohara, Y., and Hasebe, M., Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: implication for land-plant evolution. Proc. Natl. Acad. Sci. USA, 100, 8007–8012 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.