350
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Introduction of a 50 kbp DNA Fragment into the Plastid Genome

, &
Pages 2266-2273 | Received 24 Apr 2007, Accepted 31 May 2007, Published online: 22 May 2014

  • 1) Bogorad, L., Engineering chloroplasts: an alternative site for foreign genes, proteins, reactions and products. Trends Biotechnol., 18, 257–263 (2000).
  • 2) Bock, R., Transgenic plastids in basic research and plant biotecnology. J. Mol. Biol., 312, 425–438 (2001).
  • 3) Daniell, H., Khan, M. S., and Allison, L., Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci., 7, 84–91 (2002).
  • 4) Maliga, P., Engineering the plastid genome of higher plants. Curr. Opin. Plant Biol., 5, 164–172 (2002).
  • 5) Maliga, P., Plastid transformation in higher plants. Ann. Rev. Plant Biol., 55, 289–313 (2004).
  • 6) Svab, Z., Hajdukiewicz, P., and Maliga, P., Stable transformation of plastids in higher plants. Proc. Natl. Acad. Sci. USA, 87, 8526–8530 (1990).
  • 7) Svab, Z., and Maliga, P., High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc. Natl. Acad. Sci. USA, 90, 913–917 (1993).
  • 8) Daniell, H., Datta, R., Varma, S., Gray, S., and Lee, S. B., Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat. Biotechnol., 16, 345–348 (1998).
  • 9) Kota, M., Daniell, H., Varma, S., Garczynski, S. F., Gould, F., and Moar, W. J., Overexpression of Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects. Proc. Natl. Acad. Sci. USA, 96, 1840–1845 (1999).
  • 10) Brandy, D. C., William, M., Seung-Bum, L., Michael, M., and Daniell, H., Overexpression of Bt cry2Aa2 operon in chloroplasts lends to formation of insecticidal crystals. Nat. Biotechnol., 19, 71–74 (2001).
  • 11) McBride, K. E., Svab, Z., Schaaf, D. J., Hogan, P. S., Stalker, D. M., and Maliga, P., Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Biotechnology (NY), 13, 362–365 (1995).
  • 12) DeCosa, B., Moar, W., Lee, S. B., Miller, M., and Daniell, H., Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat. Biotechnol., 19, 71–74 (2001).
  • 13) DeGray, G., Rajasekaran, K., Smith, F., Sanford, J., and Daniell, H., Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol., 127, 852–862 (2001).
  • 14) Lee, S. B., Kwon, H. B., Kwon, S. J., Park, S. C., Jeong, M. J., Han, S. E., Byun, M. O., and Daniell, H., Accumulation of trehalose within transgenic chloroplasts confers drought tolerance. Mol. Breed., 11, 1–13 (2003).
  • 15) Ruiz, O. N., Hussein, H., Terry, N., and Daniell, H., Phytoremediation of organomercurial compounds via chloroplast genetic engineering. Plant Physiol., 132, 1344–1352 (2003).
  • 16) Miyake, C., Shinzaki, Y., Nishioka, M., Horiguchi, S., and Tomizawa, K., Photoinactivation of ascorbate peroxidase in isolated tobacco chloroplasts: galdieria partita APX maintains the electron flux through the water–water cycle in transplastomic tobacco plants. Plant Cell Physiol., 47, 200–210 (2006).
  • 17) Zhang, X. H., Jeffrey, E. B., Jack, M. W., and Archie, R. P., Targeting a nuclear anthranilate synthase subunit gene to the tobacco plastid genome results in enhanced tryptophan biosynthesis: return of a gene to its pre-endosymbiotic origin. Plant Physiol., 127, 131–141 (2001).
  • 18) Nakashita, H., Yuko, A., Shikanai, T., Doi, Y., and Yamaguti, I., Introduction of bacterial metabolism into higher plants by polycistronic transgene expression. Biosci. Biotechnol. Biochem., 65, 1688–1691 (2001).
  • 19) Lossl, A., Eibl, C., Harloff, H. J., Jung, C., and Koop, H. U., Polyester synthesis in transplastomic tobacco (Nicotiana tabacum L.): significant contents of polyhydroxybutyrate are associated with growth reduction. Plant Cell Rep., 21, 891–899 (2003).
  • 20) Arai, Y., Shikanai, T., Doi, Y., Yoshida, S., Yamaguchi, I., and Nakashita, H., Production of polyhydroxybutyrate by polycistronic expression of bacterial genes in tobacco plastid. Plant Cell Physiol., 45, 1176–1184 (2004).
  • 21) Kumar, S., Dhingra, A., and Daniell, H., Plastid-expression betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol., 136, 1–12 (2004).
  • 22) Yazawa, K., Production of eicosapentaenoic acid from marine bacteria. Lipids, 31, 297–300 (1996).
  • 23) Walter, A., Andreas, R., Werner, K., Ursula, B. P., and Alfred, P., Nucleotide sequence of a 24,206-base-pair DNA fragment carrying the entire nitrogen fixation gene cluster of Klebsiella penumoniae. J. Mol. Biol., 203, 715–738 (1988).
  • 24) Cieslewicz, M. J., Kasper, D. L., Wang, Y., and Wessels, M. R., Functional analysis in type Ia group B Streptococcus of a cluster of genes involved in extracellular polysaccharide production by diverse species of streptococci. J. Biol. Chem., 5, 139–146 (2001).
  • 25) Tony, A. K., Nguyen, D. T., Nga, T. L., Noreen, M., Stefan, O. P., Eva, M. H., Philip, J. D., and Peter, M., Homeologous plastid DNA transformation in tobacco is mediated by multiple recombination events. Genetics, 152, 1111–1122 (1999).
  • 26) Cilia, L. C. L., Matthew, S. M., Christine, A. N., Bastiaan, S., Kees, M. P. D., Ian, B. M., John, C. G., Kingston, H. G. M., and Jacqueline, M. N., Stable plastid transformation in lettuce (Lactuca sativa L.). Plant Mol. Biol., 58, 763–774 (2005).
  • 27) Golden, S. S., Brusslan, J., and Haselkorn, R., Genetic engineering of the cyanobacterial chromosome. Method Enzymol., 153, 215–231 (1987).
  • 28) Murashige, T., and Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol., 15, 473–497 (1962).
  • 29) Stefan, K. M., Andreas, L., Lilia, T., Zhurong, Z., and Koop, H. U., Functional analysis of plastid DNA replication origins in tobacco by targeted inactivation. Plant J., 32, 175–184 (2002).
  • 30) Liu, Y. G., Mitsukawa, N., Oosumi, T., and Whittier, R. F., Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J., 8, 457–463 (1995).
  • 31) Swiatek, M., Stephan, G., Sabine, K., Anja, D., Koop, H. U., Reinhold, G. H., and Rainer, M. M., PCR analysis of pulsed-field gel electrophoresis-purified plastid DNA, a sensitive tool to judge the hetero-/homoplastomic status of plastid transformants. Curr. Genet., 43, 45–53 (2003).
  • 32) Fernandez-San, M. A., Mingo-Castel, A., Miller, M., and Daniell, H., A chloroplast transgenic approach to hyper-express and purify Human Serum Albumin, a protein highly susceptible to proteolytic degradation. Plant Biotechnol. J., 1, 71–79 (2003).
  • 33) Deng, X. W., Wing, R. A., and Gruissem, W., The chloroplast genome exists in multimeric forms. Proc. Natl. Acad. Sci. USA, 86, 4156–4160 (1989).
  • 34) Lossl, A., Bohmert, K., Harloff, H., Eibl, C., Stefan, M., and Koop, H. U., Inducible trans-sctivation of plastid transgenes: expression of the R eutropha phb operon in transplastomic tobacco. Plant Cell Physiol., 46, 1462–1471 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.