260
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Orally Administered Lactoperoxidase Increases Expression of the FK506 Binding Protein 5 Gene in Epithelial Cells of the Small Intestine of Mice: A DNA Microarray Study

, , , , , & show all
Pages 2274-2282 | Received 27 Apr 2007, Accepted 20 Jun 2007, Published online: 22 May 2014

  • 1) Shin, K., Tomita, M., and Lönnerdal, B., Identification of lactoperoxidase in mature human milk. J. Nutr. Biochem., 11, 94–102 (2000).
  • 2) Thomas, E. L., Bozeman, P. M., and Learn, D. B., Lactoperoxidase: structure and catalytic properties. In “Peroxidases in Chemistry and Biology” Vol. 1, eds. Everse, J., Everse, K. E., and Grisham, M. B., CRC Press, Boca Raton, pp. 123–142 (1991).
  • 3) Kussendrager, K. D., and van Hooijdonk, A. C. M., Lactoperoxidase: physico-chemical properties, occurrence, mechanism of action and applications. Br. J. Nutr., 84, S19–S25 (2000).
  • 4) Shin, K., Yamauchi, K., Teraguchi, S., Hayasawa, H., and Imoto, I., Susceptibility of Helicobacter pylori and its urease activity to the peroxidase-hydrogen peroxide-thiocyanate antimicrobial system. J. Med. Microbiol., 51, 231–237 (2002).
  • 5) Gerson, C., Sabater, J., Scuri, M., Torbati, A., Coffey, R., Abraham, J. W., Lauredo, I., Forteza, R., Wanner, A., Salathe, M., Abraham, W. M., and Conner, G. E., The lactoperoxidase system functions in bacterial clearance of airways. Am. J. Respir. Cell Mol. Biol., 22, 665–671 (2000).
  • 6) Reiter, B., Marshall, V. M., and Philips, S. M., The antibiotic activity of the lactoperoxidase-thiocyanate-hydrogen peroxide system in the calf abomasums. Res. Vet. Sci., 28, 116–122 (1980).
  • 7) Tenovuo, J., Clinical applications of antimicrobial host proteins lactoperoxidase, lysozyme and lactoferrin in xerostomia: efficacy and safety. Oral Dis., 8, 23–29 (2002).
  • 8) Lefkowitz, D. L., Hsieh, T.-C., Millis, K., and Castro, A., Induction of tumor necrosis factor and cytotoxicity by macrophages exposed to lactoperoxidase and microperoxidase. Life Sci., 47, 703–709 (1990).
  • 9) Lefkowitz, D. L., Lefkowitz, S. S., Mone, J., and Everse, J., Peroxidase-induced enhancement of chemiluminescence by murine peritoneal macrophages. Life Sci., 43, 739–745 (1988).
  • 10) Wong, C. W., Seow, H. F., Husband, A. J., Regester, G. O., and Watson, D. L., Effects of purified bovine whey factors on cellular immune functions in ruminants. Vet. Immunol. Immunopathol., 56, 85–96 (1997).
  • 11) Wong, C. W., Regester, G. O., Francis, G. L., and Watson, D. L., Immunomodulatory activities of whey fractions in efferent prefemoral lymph of sheep. J. Dairy Res., 63, 257–267 (1996).
  • 12) Shin, K., Wakabayashi, H., Yamauchi, K., Teraguchi, S., Tamura, Y., Kurokawa, M., and Shiraki, K., Effects of orally administered bovine lactoferrin and lactoperoxidase on influenza virus infection in mice. J. Med. Microbiol., 54, 717–723 (2005).
  • 13) Morrison, M., and Hultquist, D. E., Lactoperoxidase II. Isolation. J. Biol. Chem., 238, 2847–2849 (1963).
  • 14) Quaroni, A., Wands, J., Trelstad, R. L., and Isselbacher, K. J., Epithelioid cell cultures from rat small intestine: characterization by morphologic and immunologic criteria. J. Cell Biol., 80, 248–265 (1979).
  • 15) Wakabayashi, H., Takakura, N., Yamauchi, K., and Tamura, Y., Modulation of immunity-related gene expression in small intestines of mice by oral administration of lactoferrin. Clin. Vaccine Immunol., 13, 239–245 (2006).
  • 16) Baughman, G., Wiederrecht, G. J., Campbell, N. F., Martin, M. M., and Bourgeois, S., FKBP51, a novel T-cell-specific immunophilin capable of calcineurin inhibition. Mol. Cell. Biol., 15, 4395–4402 (1995).
  • 17) Baughman, G., Wiederrecht, G. J., Chang, F., Martin, M. M., and Bourgeois, S., Tissue distribution and abundance of human FKBP51, an FK506-binding protein that can mediate calcineurin inhibition. Biochem. Biophys. Res. Commun., 232, 437–443 (1997).
  • 18) Bouwmeester, T., Bauch, A., Ruffner, H., Angrand, P.-O., Bergamini, G., Croughton, K., Cruciat, C., Eberhard, D., Gagneur, J., Ghidelli, S., Hopf, C., Huhse, B., Mangano, R., Michon, A.-M., Schirle, M., Schlegl, J., Schwab, M., Stein, M. A., Bauer, A., Casari, G., Drewes, G., Givin, A.-C., Jackson, D. B., Joberty, G., Neubauer, G., Rick, J., Kuster, B., and Superti-Furga, G., A physical and functional map of the human TNF-α/NF-κB signal transduction pathway. Nat. Cell Biol., 6, 97–105 (2004).
  • 19) Binder, E. B., Salyakina, D., Lichtner, P., Wochnik, G. M., Ising, M., Pütz, B., Papiol, S., Seaman, S., Lucae, S., Kohli, M. A., Nickel, T., Künzel, H. E., Fuchs, B., Majer, M., Pfennig, A., Kern, N., Brunner, J., Modell, S., Baghai, T., Deiml, T., Zill, P., Bondy, B., Rupprecht, R., Messer, T., Köhnlein, O., Dabitz, H., Brückl, T., Müller, N., Pfister, H., Lieb, R., Mueller, J. C., Lõhmussaar, E., Strom, T. M., Bettecken, T., Meitinger, T., Uhr, M., Rein, T., Holsboer, F., and Muller-Myhsok, B., Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat. Genet., 36, 1319–1325 (2004).
  • 20) Webster, M. K., Goya, L., Ge, Y., Maiyar, A. C., and Firestone, G. L., Characterization of sgk, a novel member of the serine/threonine protein kinase gene family which is transcriptionally induced by glucocorticoids and serum. Mol. Cell. Biol., 13, 2031–2040 (1993).
  • 21) Wang, Z., Malone, M. H., Thomenius, M. J., Zhong, F., Xu, F., and Distelhorst, D. W., Dexamethasone-induced gene 2 (dig2) is a novel pro-survival stress gene induced rapidly by diverse apoptotic signals. J. Biol. Chem., 278, 27053–27058 (2003).
  • 22) Cassuto, H., Kochan, K., Chakravarty, K., Cohen, H., Blum, B., Olswang, Y., Hakimi, P., Xu, C., Massillon, D., Hanson, R. W., and Reshef, L., Glucocorticoids regulate transcription of the gene for phosphoenolpyruvate carboxykinase in the liver via an extended glucocorticoid regulatory unit. J. Biol. Chem., 280, 33873–33884 (2005).
  • 23) Berrebi, D., Bruscoli, S., Cohen, N., Foussat, A., Migliorati, G., Bouchet-Delbos, L., Maillot, M.-C., Portier, A., Couderc, J., Galanaud, P., Peuchmaur, M., Riccardi, C., and Emilie, D., Synthesis of glucocorticoid-induced leucine zipper (GILZ) by macrophages: an anti-inflammatory and immunosuppressive mechanism shared by glucocorticoids and IL-10. Blood, 101, 729–738 (2003).
  • 24) Agbemafle, B. M., Oesterreicher, T. J., Shaw, C. A., and Henning, S. J., Immediate early genes of glucocorticoid action on the developing intestine. Am. J. Physiol. Gastrointest. Liver Physiol., 288, G897–G906 (2005).
  • 25) Widney, D. P., Xia, Y.-R., Lusis, A. J., and Smith, J. B., The murine chemokine CXCL11 (IFN-inducible T cell α chemoattractant) is an IFN-γ- and lipopolysaccharide-inducible glucocorticoid-attenuated response gene expressed in lung and other tissues during endotoxemia. J. Immunol., 164, 6322–6331 (2000).
  • 26) Abu-Soud, H. M., and Hazen, S. L., Nitric oxide is a physiological substrate for mammalian peroxidases. J. Biol. Chem., 275, 37524–37532 (2000).
  • 27) Abu-Soud, H. M., Khassawneh, M. Y., Sohn, J.-T., Murray, P., Haxhiu, M. A., and Hazen, S. L., Peroxidases inhibit nitric oxide (NO) dependent bronchodilation: development of a model describing NO-peroxidase interactions. Biochemistry, 40, 11866–11875 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.