141
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Preparation of Enzymes Required for Enzymatic Quantification of 5-Keto-D-gluconate and 2-Keto-D-gluconate

, , , &
Pages 2478-2486 | Received 01 May 2007, Accepted 24 Jun 2007, Published online: 22 May 2014

  • 1) Matsushita, K., Toyama, H., and Adachi, O., Respiratory chain and bioenergetics of acetic acid bacteria. In “Advances in Microbial Physiology,” eds. Rose, A. H., and Tempest, D. W., Academic Press, London, pp. 247–301 (1994).
  • 2) Shinagawa, E., Matsushita, K., Adachi, O., and Ameyama, M., D-Gluconate dehydrogenase, 2-keto-D-gluconate yielding, from Gluconobacter dioxyacetonicus: purification and characterization. Agric. Biol. Chem., 48, 1517–1522 (1984).
  • 3) Matsushita, K., Fujii, Y., Ano, Y., Toyama, H., Shinjoh, H., Tomiyama, N., Miyazaki, T., Sugisawa, T., Hoshino, T., and Adachi, O., 5-ketogluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in Gluconobacter species. Appl. Environ. Microbiol., 69, 1959–1966 (2003).
  • 4) Adachi, O., Fujii, Y., Ghaly, M. F., Toyama, H., Shinagawa, E., and Matsushita, K., Membrane-bound quinoprotein D-arabitol dehydrogenase of Gluconobacter suboxydans IFO 3257: a versatile enzyme for oxidative fermentation of various ketoses. Biosci. Biotechnol. Biochem., 65, 2755–2762 (2001).
  • 5) Sugisawa, T., and Hoshino, T., Purification and properties of membrane-bound D-sorbitol dehydrogenase from Gluconobacter suboxydans IFO 3255. Biosci. Biotechnol. Biochem., 66, 57–64 (2002).
  • 6) Ameyama, M., Shinagawa, E., Matsushita, K., and Adachi, O., Solubilization, purification and properties of membrane-bound glycerol dehydrogenase from Gluconobacter industrius. Agric. Biol. Chem., 49, 1001–1010 (1985).
  • 7) Salusjarvi, T., Povelainen, M., Hvorsley, N., Eneyskaya, E. V., Kulminskaya, A. A., Shabalin, K. A., Neustroev, K. N., Kalkkinen, N., and Miasnikov, A. N., Cloning of a gluconate/polyol dehydrogenase gene from Gluconobacter suboxydans IFO12528, and characterization of the enzyme and its use for the production of 5-ketogluconate in a recombinant Escherichia coli strain. Appl. Microbiol. Biotechnol., 65, 306–314 (2004).
  • 8) Gray, B. E., U.S. Patent 2421611 (May 4, 1947a).
  • 9) Gray, B. E., U.S. Patent 2421612 (May 4, 1947b).
  • 10) Reichstein, T., and Grüssner, A., Eine ergiebige synthese der L-ascorbinsäure (vitamin C). Helvetica Chimica Acta, 17, 311–328 (1934).
  • 11) Elfari, M., Ha, S.-W., Bremus, C., Merfort, M., Khodaverdi, V., Herrmann, U., Sahm, H., and Görisch, H., A Gluconobacter oxydans mutant converting glucose almost quantitatively to 5-keto-D-gluconic acid. Appl. Microbiol. Biotechnol., 66, 668–674 (2005).
  • 12) Ameyama, M., and Adachi, O., 2-Ketogluconate reductase from acetic acid bacteria. Methods Enzymol., 89, 203–209 (1982).
  • 13) Ameyama, M., and Adachi, O., 5-Keto-D-gluconate reductase from Gluconobacter suboxydans. Methods Enzymol., 89, 198–202 (1982).
  • 14) Sambrook, J., and Russell, D. W., “Molecular Cloning, a Laboratory Manual” 3rd ed. Vols. 1-3, Cold Spring Harbor Press, Cold Spring Harbor (2001).
  • 15) Li, S., and Wilkinson, M. F., Site-directed mutagenesis: a two-step method using PCR and DpnI. Biotechniques, 23, 588–592 (1997).
  • 16) Klasen, R., Bringer-Meyer, S., and Sahm, H., Biochemical characterization and sequence analysis of the gluconate:NADP 5-oxidoreductase gene. J. Bacteriol., 177, 2637–2643 (1995).
  • 17) Prust, C., Hoffmeister, M., Liesegang, H., Wiezer, A., Fricke, W. F., Ehrenreich, A., Gottschalk, G., and Deppenmeier, U., Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat. Biotechnol., 23, 195–200 (2005).
  • 18) Goldberg, J. D., Yoshida, T., and Brick, P., Crystal structure of a NAD-dependent D-glycerate dehydrogenase at 2.4 A resolution. J. Mol. Biol., 236, 1123–1140 (1994).
  • 19) Razeto, A., Kochhar, S., Hottinger, H., Dauter, M., Wilson, K. S., and Lamzin, V. S., Domain closure, substrate specificity and catalysis of D-lactate dehydrogenase from Lactobacillus bulgaricus. J. Mol. Biol., 318, 109–119 (2002).
  • 20) Adachi, O., Matsushita, K., Shinagawa, E., and Ameyama, M., Crystallization and properties of NADP-dependent aldehyde dehydrogenase from Gluconobacter melanogenus. Agric. Biol. Chem., 44, 155–164 (1980).
  • 21) Ahvazi, B., Coulombe, R., Delarge, M., Vedadi, M., Zhang, L., Meighen, E., and Vrielink, A., Crystal structure of the NADP+-dependent aldehyde dehydrogenase from Vibrio harveyi: structural implications for cofactor specificity and affinity. Biochem. J., 349, 853–861 (2000).
  • 22) D’Ambrosio, K., Pailot, A., Talfournier, F., Didierjean, C., Benedetti, E., Aubry, A., Branlant, G., and Corbier, C., The first crystal structure of a thioacylenzyme intermediate in the ALDH family: new coenzyme conformation and relevance to catalysis. Biochemistry, 45, 2978–2986 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.