480
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Identification and Characterization of an Intracellular Lectin, Calnexin, from Aspergillus oryzae Using N-Glycan-Conjugated Beads

, , , &
Pages 2688-2696 | Received 14 May 2007, Accepted 27 Jul 2007, Published online: 22 May 2014

  • 1) Kitamoto, K., Molecular biology of the Koji molds. Adv. Appl. Microbiol., 51, 129–153 (2002).
  • 2) Gouka, R. J., Punt, P. J., and van den Hondel, C. A., Efficient production of secreted proteins by Aspergillus: progress, limitations and prospects. Appl. Microbiol. Biotechnol., 47, 1–11 (1997).
  • 3) Archer, D. B., Filamentous fungi as microbial cell factories for food use. Curr. Opin. Biotechnol., 11, 478–483 (2000).
  • 4) Punt, P. J., van Biezen, N., Conesa, A., Albers, A., Mangnus, J., and van den Hondel, C. A., Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol., 20, 200–206 (2002).
  • 5) Helenius, A., and Aebi, M., Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem., 73, 1019–1049 (2004).
  • 6) Williams, D. B., Beyond lectins: the calnexin/calreticulin chaperone system of the endoplasmic reticulum. J. Cell Sci., 119, 615–623 (2006).
  • 7) Paquet, M. E., Leach, M. R., and Williams, D. B., In vitro and in vivo assays to assess the functions of calnexin and calreticulin in ER protein folding and quality control. Methods, 35, 338–347 (2005).
  • 8) Leach, M. R., Cohen-Doyle, M. F., Thomas, D. Y., and Williams, D. B., Localization of the lectin, ERp57 binding, and polypeptide binding sites of calnexin and calreticulin. J. Biol. Chem., 277, 29686–29697 (2002).
  • 9) Trombetta, E. S., and Parodi, A. J., Glycoprotein reglucosylation. Methods, 35, 328–337 (2005).
  • 10) Oda, Y., Hosokawa, N., Wada, I., and Nagata, K., EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin. Science, 299, 1394–1397 (2003).
  • 11) Molinari, M., Calance, V., Galli, C., Lucca, P., and Paganetti, P., Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle. Science, 299, 1397–1400 (2003).
  • 12) Szathmary, R., Bielmann, R., Nita-Lazar, M., Burda, P., and Jakob, C. A., Yos9 protein is essential for degradation of misfolded glycoproteins and may function as lectin in ERAD. Mol. Cell, 19, 765–775 (2005).
  • 13) Matsuo, I., and Ito, Y., Synthesis of an octamannosyled glycan chain, the key oligosaccharide structure in ER-associated degradation. Carbohydr. Res., 338, 2163–2168 (2003).
  • 14) Matsuo, I., Wada, M., Manabe, S., Yamaguchi, Y., Otake, K., Kato, K., and Ito, Y., Synthesis of monoglucosylated high-mannose-type dodecasaccharide, a putative ligand for molecular chaperone, calnexin, and calreticulin. J. Am. Chem. Soc., 125, 3402–3403 (2003).
  • 15) Matsuo, I., Kashiwagi, T., Totani, K., and Ito, Y., First chemical synthesis of triglucosylated tetradecasaccharide (Glc3Man9GlcNAc2), a common precursor of asparagine-linked oligosaccharides. Tetrahedron Lett., 46, 4197–4200 (2005).
  • 16) Matsuo, I., Totani, K., Tatami, A., and Ito, Y., Comprehensive synthesis of ER related high-mannose-type sugar chains by convergent strategy. Tetrahedron, 62, 8262–8277 (2006).
  • 17) Totani, K., Ihara, Y., Matsuo, I., Koshino, H., and Ito, Y., Synthetic substrates for an endoplasmic reticulum protein-folding sensor, UDP-glucose: glycoprotein glucosyltransferase. Angew. Chem. Int. Ed. Engl., 44, 7950–7954 (2005).
  • 18) Totani, K., Ihara, Y., Matsuo, I., and Ito, Y., Substrate specificity analysis of endoplasmic reticulum glucosidase II using synthetic high mannose-type glycans. J. Biol. Chem., 281, 31502–31508 (2006).
  • 19) Conesa, A., Jeenes, D., Archer, D. B., van den Hondel, C. A., and Punt, P. J., Calnexin overexpression increases manganese peroxidase production in Aspergillus niger. Appl. Environ. Microbiol., 68, 846–851 (2002).
  • 20) Geysens, S., Pakula, T., Uusitalo, J., Dewerte, I., Penttila, M., and Contreras, R., Cloning and characterization of the glucosidase II alpha subunit gene of Trichoderma reesei: a frameshift mutation results in the aberrant glycosylation profile of the hypercellulolytic strain Rut-C30. Appl. Environ. Microbiol., 71, 2910–2924 (2005).
  • 21) Totani, K., Matsuo, I., Ihara, Y., and Ito, Y., High-mannose-type glycan modifications of dihydrofolate reductase using glycan-methotrexate conjugates. Bioorg. Med. Chem., 14, 5220–5229 (2006).
  • 22) Ellman, G. L., Tissue sulfhydryl groups. Arch. Biochem. Biophys., 82, 70–77 (1959).
  • 23) Shevchenko, A., Wilm, M., Vorm, O., and Mann, M., Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem., 68, 850–858 (1996).
  • 24) Perkins, D. N., Pappin, D. J., Creasy, D. M., and Cottrell, J. S., Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis, 20, 3551–3567 (1999).
  • 25) Mabashi, Y., Kikuma, T., Maruyama, J., Arioka, M., and Kitamoto, K., Development of a versatile expression plasmid construction system for Aspergillus oryzae and its application to visualization of mitochondria. Biosci. Biotechnol. Biochem., 70, 1882–1889 (2006).
  • 26) Yamada, O., Lee, B. R., and Gomi, K., Transformation system for Aspergillus oryzae with double auxotrophic mutations, niaD and sC. Biosci. Biotechnol. Biochem., 61, 1367–1369 (1997).
  • 27) Ware, F. E., Vassilakos, A., Peterson, P. A., Jackson, M. R., Lehrman, M. A., and Williams, D. B., The molecular chaperone calnexin binds Glc1Man9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. J. Biol. Chem., 270, 4697–4704 (1995).
  • 28) Maruyama, J., Kikuchi, S., and Kitamoto, K., Differential distribution of the endoplasmic reticulum network as visualized by the BipA-EGFP fusion protein in hyphal compartments across the septum of the filamentous fungus, Aspergillus oryzae. Fungal Genet. Biol., 43, 642–654 (2006).
  • 29) Arai, M. A., Matsuo, I., Hagihara, S., Totani, K., Maruyama, J., Kitamoto, K., and Ito, Y., Design and synthesis of oligosaccharides that interfere with glycoprotein quality-control systems. Chembiochem, 6, 2281–2289 (2005).
  • 30) Jannatipour, M., and Rokeach, L. A., The Schizosaccharomyces pombe homologue of the chaperone calnexin is essential for viability. J. Biol. Chem., 270, 4845–4853 (1995).
  • 31) Parlati, F., Dignard, D., Bergeron, J. J., and Thomas, D. Y., The calnexin homologue cnx1 + in Schizosaccharomyces pombe, is an essential gene which can be complemented by its soluble ER domain. EMBO J., 14, 3064–3072 (1995).
  • 32) Wang, H., Entwistle, J., Morlon, E., Archer, D. B., Peberdy, J. F., Ward, M., and Jeenes, D. J., Isolation and characterisation of a calnexin homologue, clxA, from Aspergillus niger. Mol. Genet. Genomics, 268, 684–691 (2003).
  • 33) Spiro, R. G., Zhu, Q., Bhoyroo, V., and Soling, H. D., Definition of the lectin-like properties of the molecular chaperone, calreticulin, and demonstration of its copurification with endomannosidase from rat liver Golgi. J. Biol. Chem., 271, 11588–11594 (1996).
  • 34) Vassilakos, A., Michalak, M., Lehrman, M. A., and Williams, D. B., Oligosaccharide binding characteristics of the molecular chaperones calnexin and calreticulin. Biochemistry, 37, 3480–3490 (1998).
  • 35) Schrag, J. D., Bergeron, J. J., Li, Y., Borisova, S., Hahn, M., Thomas, D. Y., and Cygler, M., The Structure of calnexin, an ER chaperone involved in quality control of protein folding. Mol. Cell, 8, 633–644 (2001).
  • 36) Corbett, E. F., and Michalak, M., Calcium, a signaling molecule in the endoplasmic reticulum? Trends Biochem. Sci., 25, 307–311 (2000).
  • 37) Gurr, S. J., Unkles, S. E., and Kinghorn, J. R., The structure and organisation of nuclear genes in filamentous fungi. In “Gene Structure in Eukaryotic Microbes,” ed. Kinghorn, J. R., IRL Press, Oxford, pp. 93–139 (1987).
  • 38) Mulder, H. J., Nikolaev, I., and Madrid, S. M., HACA, the transcriptional activator of the unfolded protein response (UPR) in Aspergillus niger, binds to partly palindromic UPR elements of the consensus sequence 5′-CAN(G/A)NTGT/GCCT-3′. Fungal Genet. Biol., 43, 560–572 (2006).
  • 39) Ito, Y., Hagihara, S., Matsuo, I., and Totani, K., Structural approaches to the study of oligosaccharides in glycoprotein quality control. Curr. Opin. Struct. Biol., 15, 481–489 (2005).
  • 40) Hagihara, S., Totani, K., Matsuo, I., and Ito, Y., Thermodynamic analysis of interactions between N-linked sugar chains and F-box protein Fbs1. J. Med. Chem., 48, 3126–3129 (2005).
  • 41) Xu, X., Azakami, H., and Kato, A., P-domain and lectin site are involved in the chaperone function of Saccharomyces cerevisiae calnexin homologue. FEBS Lett., 570, 155–160 (2004).
  • 42) Song, Y., Azakami, H., Shamima, B., He, J., and Kato, A., Different effects of calnexin deletion in Saccharomyces cerevisiae on the secretion of two glycosylated amyloidogenic lysozymes. FEBS Lett., 512, 213–217 (2002).
  • 43) Song, Y., Sata, J., Saito, A., Usui, M., Azakami, H., and Kato, A., Effects of calnexin deletion in Saccharomyces cerevisiae on the secretion of glycosylated lysozymes. J. Biochem., 130, 757–764 (2001).
  • 44) Parodi, A. J., Reglucosylation of glycoproteins and quality control of glycoprotein folding in the endoplasmic reticulum of yeast cells. Biochim. Biophys. Acta, 1426, 287–295 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.