375
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Purification and Characterization of Sulfide:Quinone Oxidoreductase from an Acidophilic Iron-Oxidizing Bacterium, Acidithiobacillus ferrooxidans

, , , , &
Pages 2735-2742 | Received 29 May 2007, Accepted 23 Jul 2007, Published online: 22 May 2014

  • 1) Rawlings, D. E., Heavy metal mining using microbes. Annu. Rev. Microbiol., 56, 65–91 (2002).
  • 2) Rohwerder, T., Gehrke, T., Kinzler, K., and Sand, W., Bioleaching review. Part A. Progress in bioleaching: fundamentals and mechanism of bacterial metal sulfide oxidation. Appl. Microbiol. Biotechnol., 63, 239–248 (2003).
  • 3) Rawlings, D. E., Characterization and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microb. Cell Fact., 4, 13 (http://www.microbialcellfactories.com/content/4/1/13). (2005).
  • 4) Appia-Ayme, C., Guiliani, N., Ratouchniak, J., and Bonnefoy, V., Characterization of an operon encoding two c-type cytochromes, an aa 3-type cytochrome oxidase, and rusticyanin in Thiobacillus ferrooxidans ATCC33020. Appl. Environ. Microbiol., 65, 4781–4787 (1999).
  • 5) Yarzábal, A., Brasseur, G., and Bonnefoy, V., Cytochrome c of Acidithiobacillus ferrooxidans. FEMS Microbiol. Lett., 209, 189–195 (2002).
  • 6) Yarzábal, A., Appia-Ayme, C., Ratouchniak, J., and Bonnefoy, V., Regulation of the expression of the Acidithiobacillus ferrooxidans rus operon encoding two cytochromes c, a cytochrome oxidase and rusticyanin. Microbiology, 150, 2113–2123 (2004).
  • 7) Silver, M., and Lundgren, D. G., Sulfur-oxidizing enzyme of Ferrobacillus ferrooxidans. Can. J. Biochem., 46, 457–461 (1968).
  • 8) Silver, M., and Lundgren, D. G., The thiosulfate-oxidizing enzyme of Ferrobacillus ferrooxidans. Can. J. Biochem., 46, 1215–1220 (1968).
  • 9) Tabita, R., Silver, M., and Lundgren, D. G., The rhodanese enzyme of Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans). Can. J. Biochem., 47, 1141–1145 (1969).
  • 10) Vestal, J. R., and Lundgren, D. G., The sulfite oxidase of Thiobacillus ferrooxidans. Can. J. Biochem., 49, 1125–1130 (1971).
  • 11) Eccleston, M., and Kelly, D. P., Oxidation kinetics and chemostat growth kinetics of Thiobacillus ferrooxidans on tetrathionate and thiosulfate. J. Bacteriol., 134, 718–727 (1978).
  • 12) Sugio, T., Mizunashi, M., Inagaki, K., and Tano, T., Purification and some properties of sulfur:ferric ion oxidoreductase from Thiobacillus ferrooxidans. J. Bacteriol., 169, 4916–4922 (1987).
  • 13) Sugio, T., Hirose, T., Zhen, Y. L., and Tano, T., Purification and some properties of sulfite:ferric ion oxidoreductase from Thiobacillus ferrooxidans. J. Bacteriol., 174, 4189–4192 (1992).
  • 14) de Jong, G. A., Hazeu, H. W., Bos, P., and Kuenen, J. G., Polythionate degradation by tetrathionate hydrolase of Thiobacillus ferrooxidans. Microbiology, 143, 499–504 (1997).
  • 15) Brasseur, G., Bruscella, P., Bonnefoy, V., and Lemesle-Meunier, D., The bc 1 complex of the iron-grown acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans functions in the reverse but not in the forward direction. Is there a second bc 1 complex? Biochim. Biophys. Acta, 1555, 37–43 (2002).
  • 16) Ramírez, P., Toledo, H., Guiliani, N., and Jerez, C. A., An exported rhodanese-like protein is induced during growth of Acidithiobacillus ferrooxidans in metal sulfides and different sulfur compounds. Appl. Environ. Microbiol., 68, 1837–1845 (2002).
  • 17) Kelly, D. P., Thermodynamic aspects of energy conversion by chemolithotrophic sulfur bacteria in relation to the sulfur oxidation pathways. Arch. Microbiol., 171, 219–229 (1999).
  • 18) Kappeler, U., and Dahl, C., Enzymology and molecular biology of prokaryotic sulfite oxidation. FEMS Microbiol. Lett., 203, 1–9 (2001).
  • 19) Kletzin, A., Urich, T., Müller, F., Bandeiras, T. M., and Gomes, C. M., Dissimilatory oxidation and reduction of elemental sulfur in thermophilic archaea. J. Bioenerg. Biomembr., 36, 77–91 (2004).
  • 20) Friedrich, C. G., Bardischewsky, F., Rother, D., Quentmeier, A., and Fisher, J., Prokaryotic sulfur oxidation. Curr. Opin. Microbiol., 8, 253–259 (2005).
  • 21) Pronk, J. T., Meulenberg, R., Hazeu, W., Bos, P., and Kuenen, J. G., Oxidation of reduced inorganic sulfur compounds by acidophilic Thiobacilli. FEMS Microbiol. Rev., 75, 293–306 (1990).
  • 22) Kelly, D. P., Shergill, J. K., Lu, W. P., and Wood, A. P., Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie van Leeuwenhoek, 71, 95–107 (1997).
  • 23) Rohwerder, T., and Sand, W., The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp. Microbiology, 149, 1699–1709 (2003).
  • 24) Kamimura, K., Fujii, S., and Sugio, T., Purification and some properties of ubiquinol oxidase from obligately chemolithotrophic iron-oxidizing bacterium, Thiobacillus ferrooxidans NASF-1. Biosci. Biotechnol. Biochem., 65, 63–71 (2001).
  • 25) Wakai, S., Kikumoto, M., Kanao, T., and Kamimura, K., Involvement of sulfide:quinone oxidoreductase in sulfur oxidation of an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans NASF-1. Biosci. Biotechnol. Biochem., 68, 2519–2528 (2004).
  • 26) Sugio, T., Kanao, T., Furukawa, H., Nagasawa, T., and Blake, R. C., II, Isolation and identification of an iron-oxidizing bacterium which can grow on tetrathionate medium and the properties of a tetrathionate-decomposing enzyme isolated from the bacterium. J. Ferment. Bioeng., 82, 233–238 (1996).
  • 27) Bronstein, M., Schütz, M., Hauska, G., Padan, E., and Shahak, Y., Cyanobacterial sulfide-quinone reductase: cloning and heterologous expression. J. Bacteriol., 182, 3336–3344 (2000).
  • 28) Nübel, T., Klughammer, C., Huber, R., Hauska, G., and Schütz, M., Sulfide:quinone oxidoreductase in membranes of the hyperthermophilic bacterium Aquifex aeolicus (VF5). Arch. Microbiol., 173, 233–244 (2000).
  • 29) Burgess, R. R., Purification of overproduced Escherichia coli RNA polymerase σ factors by solubilizing inclusion bodies and refolding from Sarkosyl. Methods Enzymol., 273, 145–149 (1996).
  • 30) Brasseur, G., Levican, G., Bonnefoy, V., Holmes, D., Jedlicki, E., and Lemesle-Meunier, D., Apparent redundancy of electron transfer pathways via bc 1 complexes and terminal oxidases in the extremophilic chemolithoautotrophic Acidithiobacillus ferrooxidans. Biochim. Biophys. Acta, 1656, 114–126 (2004).
  • 31) Arieli, B., Shahak, Y., Taglicht, D., Hauska, G., and Padan, E., Purification and characterization of sulfide-quinone reductase, a novel enzyme driving anoxygenic photosynthesis in Oscillatoria limnetica. J. Biol. Chem., 269, 5705–5711 (1994).
  • 32) Schütz, M., Shahak, Y., Padan, E., and Hauska, G., Sulfide-quinone reductase from Rhodobacter capsulatus. J. Biol. Chem., 272, 9890–9894 (1997).
  • 33) Griesbeck, C., Schütz, M., Schödl, T., Bathe, S., Nausch, L., Mederer, N., Vielreicher, M., and Hauska, G., Mechanism of sulfide-quinone reductase investigated using site-directed mutagenesis and sulfur analysis. Biochemistry, 41, 11552–11565 (2002).
  • 34) Schütz, M., Maldener, I., Griesbeck, C., and Hauska, G., Sulfide-quinone reductase from Rhodobacter capsulatus: requirement for growth, periplasmic localization, and extension of gene sequence analysis. J. Bacteriol., 181, 6516–6523 (1999).
  • 35) Bruscella, P., Cassagnaud, L., Ratouchniak, J., Brasseur, G., Lojou, E., Amils, R., and Bonnefoy, V., The HiPIP from the acidophilic Acidithiobacillus ferrooxidans is correctly processed and translocated in Escherichia coli, in spite of the periplasm pH difference between these two micro-organisms. Microbiology, 151, 1421–1431 (2005).
  • 36) Bengrine, A., Guiliani, N., Appia-Ayme, C., Jedlicke, E., Holmes, D. S., Chippaux, M., and Bonnefoy, V., Sequence and expression of the rusticyanin structural gene from Thiobacillus ferrooxidans ATCC33020 strain. Biochim. Biophys. Acta, 1443, 99–112 (1998).
  • 37) Liu, Z., Guiliani, N., Appia-Ayme, C., Borne, F., Rotouchniak, J., and Bonnefoy, V., Construction and characterization of a recA mutant of Thiobacillus ferrooxidans by maker exchange mutagenesis. J. Bacteriol., 182, 2269–2276 (2000).
  • 38) Sugio, T., Suzuki, H., Oto, A., Inagaki, K., Tanaka, H., and Tano, T., Purification and some properties of a hydrogen sulfide binding protein that is involved in sulfur oxidation of Thiobacillus ferrooxidans. Agric. Biol. Chem., 55, 2091–2097 (1991).
  • 39) Janiczek, O., Zemanova, J., and Mandl, M., Purification and some properties of thiosulfate dehydrogenase from Acidithiobacillus ferrooxidans. Prep. Biochem. Biotechnol., 37, 101–111 (2007).
  • 40) Schütz, M., Klughammer, C., Griesbeck, C., Quentmeier, A., Friedrich, C. G., and Hauska, G., Sulfide-quinone reductase activity in membranes of the chemotrophic bacterium Paracoccus denitrificans GB17. Arch. Microbiol., 170, 353–360 (1998).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.