254
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

RNA Silencing Systems and Their Relevance to Allele-Specific DNA Methylation in Plants

&
Pages 2632-2646 | Published online: 22 May 2014

  • 1) Klose, R. J., and Bird, A. P., Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci., 31, 89–97 (2006).
  • 2) Chan, S. W., Henderson, I. R., and Jacobsen, S. E., Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat. Rev. Genet., 6, 351–360 (2005).
  • 3) Bird, A., DNA methylation patterns and epigenetic memory. Genes Dev., 16, 6–21 (2002).
  • 4) Schöb, H., and Grossniklaus, U., The first high-resolution DNA “Methylome.” Cell, 126, 1025–1028 (2006).
  • 5) Depicker, A., Sanders, M., and Meyer, P. T., Transgene silencing. In “Plant Epigenetics,” ed. Meyer, P., Blackwell, Oxford, pp. 1–32 (2005).
  • 6) Kalisz, S., and Purugganan, M. D., Epialleles via DNA methylation: consequences for plant evolution. Trends Ecol. Evol., 19, 309–314 (2004).
  • 7) Rothenburg, S., Koch-Noite, F., Thiele, H.-G., and Haag, F., DNA methylation contributes to tissue- and allele-specific expression of the T-cell differentiation marker RT6. Immunogenetics, 52, 231–241 (2001).
  • 8) Grossniklaus, U., Genomic imprinting in plants: a predominatly maternal affair. In “Plant Epigenetics,” ed. Meyer, P., Blackwell, Oxford, pp. 174–200 (2005).
  • 9) Louwers, M., Haring, M., and Stam, M., When alleles meet: paramutation. In “Plant Epigenetics,” ed. Meyer, P., Blackwell, Oxford, pp. 134–173 (2005).
  • 10) Neves, N., Viegas, W., and Pikaard, C. S., Nucleolar dominance and rRNA gene dosage control: a paradigm for transcriptional regulation via an epigenetic on/off switch. In “Plant Epigenetics,” ed. Meyer, P., Blackwell, Oxford, pp. 201–222 (2005).
  • 11) Kakutani, T., Epi-alleles in plants: inheritance of epigenetic information over generations. Plant Cell Physiol., 43, 1106–1111 (2002).
  • 12) Kinoshita, T., Miura, A., Choi, Y., Kinoshita, Y., Cao, X., Jacobsen, S. E., Fischer, R. L., and Kakutani, T., One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science, 303, 521–523 (2004).
  • 13) Gehring, M., Huh, J. H., Hsieh, T.-F., Penterman, J., Choi, Y., Harada, J. J., Goldberg, R. B., and Fischer, R. L., DEMETER DNA glycosilase establishes MEDEA Polycomb gene self-imprinting by allele-specific demethylation. Cell, 124, 495–506 (2006).
  • 14) Shiba, H., Kakizaki, T., Iwano, M., Tarutani, Y., Watanabe, M., Isogai, A., and Takayama, S., Dominance relationships between self-incompatibility alleles controlled by DNA methylation. Nat. Genet., 38, 297–299 (2006).
  • 15) Meins, J. F., Si-Ammour, A., and Blevins, T., RNA silencing systems and their relevance to plant development. Annu. Rev. Cell Dev. Biol., 21, 297–318 (2005).
  • 16) Tijsterman, M., Ketting, R. F., and Plasterk, R. H. A., The genetics of RNA silencing. Annu. Rev. Genet., 36, 489–519 (2002).
  • 17) Matzke, M. A., and Birchler, J. A., RNAi-mediated pathways in the nucleus. Nat. Rev. Genet., 6, 24–34 (2005).
  • 18) Bartel, D. P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281–297 (2004).
  • 19) Hamilton, A., Voinnet, O., Chappell, L., and Baulcombe, D., Two classes of short interfering RNA in RNA silencing. EMBO J., 21, 4671–4679 (2002).
  • 20) Tang, G., Reinhart, B. J., Bartel, D. P., and Zamore, P. D., A biochemical framework for RNA silencing in plants. Genes Dev., 17, 49–63 (2003).
  • 21) Zilberman, D., Gahring, M., Tran, R. K., Ballinger, T., and Henikoff, S., Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat. Genet., 39, 61–69 (2007).
  • 22) Kidner, C. A., and Martienssen, R. A., The developmental role of microRNA in plants. Curr. Opin. Plant Biol., 8, 38–44 (2005).
  • 23) Allen, E., Xie, Z., Gustafson, A. M., and Carrington, J. C., microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell, 121, 207–221 (2005).
  • 24) Axtell, M. J., Jan, C., Rajagopalan, R., and Bartel, D. P., A two-hit trigger for siRNA biogenesis in plants. Cell, 127, 565–577 (2006).
  • 25) Almeida, R., and Allshir, R. C., RNA silencing and genome regulation. Trends Cell. Biol., 15, 251–258 (2005).
  • 26) Baulcombe, D., RNA silencing in plants. Nature, 431, 356–363 (2004).
  • 27) Grewal, S. I., and Rice, J. C., Regulation of heterochromatin by histone methylation and small RNAs. Curr. Opin. Cell Biol., 16, 230–238 (2004).
  • 28) Tomari, Y., and Zamore, P. D., Perspective: machines for RNAi. Genes Dev., 19, 517–529 (2005).
  • 29) Aukerman, M. J., and Sakai, H., Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell, 15, 2730–2741 (2003).
  • 30) Schauer, S. E., Jacobsen, S. E., Meinke, D. W., and Ray, A., DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci., 7, 487–491 (2002).
  • 31) Vaucheret, H., Vazquez, F., Crete, P., and Bartel, D. P., The action of ARGONAUTE 1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev., 18, 1187–1197 (2004).
  • 32) Yu, B., Yang, Z., Li, J., Minakhina, S., Yang, M., Padgett, R. W., Steward, R., and Chen, X., Methylation as a crucial step in plant microRNA biogenesis. Science, 307, 932–935 (2005).
  • 33) Li, J., Yang, Z., Yu, B., Liu, J., and Chen, X., Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr. Biol., 15, 1501–1507 (2005).
  • 34) Bollman, K. M., Aukerman, M. J., Park, M. Y., Hunter, C., Berardini, T. Z., and Poethig, R. S., HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis. Development, 130, 1493–1504 (2003).
  • 35) Vazquez, F., Gasciolli, V., Crete, P., and Vaucheret, H., The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr. Biol., 14, 346–351 (2004).
  • 36) Gendrel, A. V., and Colot, V., Arabidopsis epigenetics: when RNA meets chromatin. Curr. Opin. Plant Biol., 8, 142–147 (2005).
  • 37) Xie, Z., Johansen, L. K., Gustafson, A. M., Kasschau, K. D., Lellis, A. D., Zilberman, D., Jacobsen, S. E., and Carrington, J. C., Genetic and functional diversification of small RNA pathways in plants. PLoS Biol., 2, 642–652 (2004).
  • 38) Chan, S. W., Zilberman, D., Xie, Z., Johansen, L. K., Carrington, J. C., and Jacobsen, S. E., RNA silencing genes control de novo DNA methylation. Science, 303, 1336 (2004).
  • 39) Zilberman, D., Cao, X., and Jacobsen, S. E., ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science, 299, 716–719 (2003).
  • 40) Zilberman, D., Cao, X., Johansen, L. K., Xie, Z., Carrington, J. C., and Jacobsen, S. E., Role of Arabidopsis ARGONAUTE4 in RNA-directed DNA methylation triggered by inverted repeats. Curr. Biol., 14, 1214–1220 (2004).
  • 41) Cao, X., Aufsatz, W., Zilberman, D., Mette, M. F., Huang, M. S., Matzke, M., and Jacobsen, S. E., Role of the Arabidopsis DRM and CMT3 methyltransferases in RNA-directed DNA methylation. Curr. Biol., 13, 2212–2217 (2003).
  • 42) Herr, A. J., Jensen, M. B., Dalmay, T., and Baulcombe, D. C., RNA polymerase IV directs silencing of endogenous DNA. Science, 308, 118–120 (2005).
  • 43) Pontes, O., Li, C. F., Nunes, P. C., Haag, J., Ream, T., Vitins, A., Jacobsen, S. E., and Pikaard, C. S., The Arabidopsis Chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell, 126, 79–92 (2006).
  • 44) Mourrain, P., Béclin, C., Elmayan, T., Feuerbach, F., Godon, C., Morel, J.-B., Jouette, D., Lacombe, A.-M., Nikic, S., Pikcault, N., Rémoué, K., Sanial, M., Vo, T.-A., and Voucheret, H., Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell, 101, 533–542 (2000).
  • 45) Dalmay, T., Hamilton, A., Rudd, S., Angell, S., and Baulcombe, D. C., An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell, 101, 543–553 (2000).
  • 46) Dalmay, T., Horsefield, R., Braunstein, T. H., and Baulcombe, D. C., SDE3 encodes an RNA helicase required for post-transcriptional gene silencing in Arabidopsis. EMBO J., 20, 2069–2078 (2001).
  • 47) Li, E., Bestor, T. H., and Jaenisch, R., Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell, 69, 915–926 (1992).
  • 48) Okano, M., Bell, D. W., Haber, D. A., and Li, E., DNA methyltransferase Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 99, 247–257 (1999).
  • 49) Finnegan, E. J., Peacock, W. J., and Dennis, E. S., Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc. Natl. Acad. Sci. USA, 93, 8449–8454 (1996).
  • 50) Kandel, M. W., Ramsey, D. E., Stokes, T. L., Flowers, S. K., Haag, J. R., Jeddeloh, J. A., Riddle, N. C., Verbsky, M. L., and Richards, E., Arabidopsis MET1 cytosine methyltransferase mutants. Genetics, 163, 1109–1122 (2003).
  • 51) Cao, X., Springer, N. M., Muszynski, M. G., Phillips, R. L., Kaeppler, S., and Jacobsen, S. E., Conserved plant genes with similarity to mammalian de novo DNA methyltransferases. Proc. Natl. Acad. Sci. USA, 97, 4979–4984 (2000).
  • 52) Lindroth, A. M., Cao, X., Jackson, J. P., Zilberman, D., McCallum, C. M., Henikoff, S., and Jacobsen, S. E., Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science, 292, 2077–2080 (2001).
  • 53) Henikoff, S., and Comai, L., A DNA methyltransferase homolog with a chromodomain exists in multiple polymorphic forms in Arabidopsis. Genetics, 149, 307–318 (1998).
  • 54) Chan, S. W., Henderson, I. R., Zhang, X., Shah, G., Chien, J. S.-C., and Jacobsen, S. E., RNAi, DRD1, and histone methylation actively target developmentally important non-CG DNA methylation in Arabidopsis. PLoS Genet., 2, 791–797 (2006).
  • 55) Goll, M. G., and Bestor, T. H., Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem., 74, 481–514 (2005).
  • 56) Bender, J., DNA methylation and epigenetics. Annu. Rev. Plant Biol., 55, 41–68 (2004).
  • 57) Pélissier, T., Thalmeir, S., Kempe, D., Sanger, H.-L., and Wassenegger, M., Heavy de novo methylation at symmetrical and non-symmetrical sites is a hallmark of RNA-directed DNA methylation. Nucleic Acid Res., 27, 1625–1634 (1999).
  • 58) Kanno, T., Mette, M. F., Kreil, D. P., Aufsatz, W., Matzke, M., and Matzke, A. J. M., Involvement of putative SNF2 chromatin remodeling protein DRD1 in RNA-directed DNA methylation. Curr. Biol., 14, 801–805 (2004).
  • 59) Waterhouse, P. M., Graham, M. W., and Wang, M.-B., Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc. Natl. Acad. Sci. USA, 95, 13959–13964 (1998).
  • 60) Johansen, L. K., and Carrington, J. C., Silencing on the spot: induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system. Plant Physiol., 126, 930–938 (2001).
  • 61) Jones, L., Ratcliff, F., and Baulcombe, D. C., RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Met1 for maintenance. Curr. Biol., 11, 747–757 (2001).
  • 62) Morel, J.-B., Mourrain, P., Béclin, C., and Vaucheret, H., DNA methylation and chromatin structure affect transcriptional and post-transcriptional transgene silencing in Arabidopsis. Curr. Biol., 10, 1591–1594 (2000).
  • 63) Lippman, Z., Gendrel, A.-V., Black, M., Vaughn, M. W., Dedhia, N., McCombie, W. R., Lavine, K., Mittal, V., May, B., Kasschau, K. D., Carrington, J. C., Doerge, R. W., Colot, V., and Martienssen, R., Role of transposable elements in heterochromatin and epigenetic control. Nature, 430, 471–476 (2004).
  • 64) Miura, A., Yonebayashi, S., Watanabe, K., Toyama, T., Shimada, H., and Kakutani, T., Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis. Nature, 411, 212–214 (2001).
  • 65) Zhang, X., Yazaki, J., Sundaresan, A., Cokus, S., Chan, S. W. L., Chen, H., Henderson, I. R., Shinn, P., Pollegrini, M., Jacobsen, S. E., and Ecker, J. R., Genome-wide high-resolution mapping band functional analysis of DNA methylation in Arabidopsis. Cell, 126, 1189–1201 (2006).
  • 66) Lu, C., Tej, S. S., Luo, S., Haudenschild, C. D., Meyers, B. C., and Green, P. J., Elucidation of the small RNA component of the transcriptome. Science, 309, 1567–1569 (2005).
  • 67) Almeida, R., and Allshir, R. C., RNA silencing and genome regulation. Trends Cell. Biol., 15, 251–258 (2005).
  • 68) Tomari, Y., and Zamore, P., Perspective: machines for RNAi. Genes Dev., 19, 517–529 (2005).
  • 69) Pontes, O., Li, C. F., Nunes, P. C., Haag, J., Ream, T., Vitins, A., Jacobsen, S. E., and Pikaard, C. S., The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell, 126, 79–92 (2006).
  • 70) Hall, I. M., Shankaranarayana, G. D., Noma, K., Ayoub, N., Cohen, A., and Grewal, S. S., Establishment and maintenance of heterochromatin domain. Science, 297, 2232–2237 (2002).
  • 71) Schramke, V., and Allshire, R., Hairpin RNAs and retrotransposon LTRs effect RNAi and chromatin-based gene silencing. Science, 301, 1069–1074 (2003).
  • 72) Volpe, T. A., Kinder, C., Hall, I. M., Teng, G., Grewal, S. S., and Martienssen, R., Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science, 297, 1833–1837 (2002).
  • 73) Mette, M. F., Aufsatz, W., van der Winden, J., Matzke, M. A., and Matzke, A. J., Transcriptional silencing and promoter methylation triggered by double stranded RNA. EMBO J., 19, 5194–5201 (2000).
  • 74) Sijen, T., Vijn, I., Rebocho, A., van Blokland, R., Roelofs, D., Mol, J. N. M., and Kooter, J. M., Transcriptional and posttranscriptional gene silencing are mechanically related. Curr. Biol., 11, 436–440 (2001).
  • 75) Aufsatz, W., Mette, M. F., van der Winden, J., Matzke, A. J., and Matzke, M., RNA-directed DNA methylation in Arabidopsis. Proc. Natl. Acad. Sci. USA, 99, 16499–16506 (2002).
  • 76) Melquist, S., and Bender, J., Transcription from an upstream promoter controls methylation signaling from an inverted repeat of endogenous genes in Arabidopsis. Genes Dev., 17, 2036–2047 (2003).
  • 77) Bao, N., Lye, K.-W., and Barton, M. K., MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev. Cell, 7, 653–662 (2004).
  • 78) Park, W., Li, J., Song, R., Messing, J., and Chen, X., CARPEL FACTORY, a dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr. Biol., 12, 1484–1495 (2002).
  • 79) Kakutani, T., Munakata, K., Richards, E. J., and Hirochika, H., Meiotically and mitotically stable inheritance of DNA hypomethylation induced by ddm1 mutation of Arabidopsis thaliana. Genetics, 151, 831–838 (1999).
  • 80) Jacobsen, S. E., and Meyerowitz, E. M., Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science, 277, 1100–1103 (1997).
  • 81) Soppe, W. J., Jacobsen, S. E., Alonso-Blanco, C., Jackson, J. P., Kakutani, T., Koornneef, M., and Peeters, J. M., The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol. Cell, 6, 791–802 (2000).
  • 82) Sakai, H., Medrano, L. J., and Meyerowitz, E. M., Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries. Nature, 378, 199–203 (1995).
  • 83) Vongs, A., Kakutani, T., Martienssen, R. A., and Richards, E. J., Arabidopsis thaliana DNA methylation mutants. Science, 260, 1926–1928 (1993).
  • 84) Jeddeloh, J. A., Stokes, T. L., and Richards, E. J., Maintenance of genomic methylation requires a SWI2/SNF2-like protein. Nat. Genet., 22, 94–97 (1999).
  • 85) Finnegan, E. J., and Dennis, E. S., Isolation and identification by sequence homology of a putative cytosine methyltransferase from Arabidopsis thaliana. Nucleic Acids Res., 21, 2383–2388 (1993).
  • 86) Ronemus, M. J., Galbiati, M., Ticknor, C., Chen, J., and Dellaporta, S. L., Demethylation-induced developmental pleiotropy in Arabidopsis. Science, 273, 654–657 (1996).
  • 87) Kakutani, T., Jeddeloh, J. A., Flowers, S. K., Munakata, K., and Richards, E. J., Developmental abnormalities and epimutations associated with DNA hypomethylation mutants. Proc. Natl. Acad. Sci. USA, 93, 12406–12411 (1996).
  • 88) Kinoshita, Y., Saze, H., Kinoshita, T., Miura, A., Soppe, W. J. J., Koornneef, M., and Kakutani, T., Control of FWA gene silencing in Arabidopsis thaliana by SINE-related direct repeats. Plant J., 49, 38–45 (2007).
  • 89) Stokes, T. L., Kunkel, B. N., and Richards, E. J., Epigenetic variation in Arabidopsis disease resistance. Genes Dev., 16, 171–182 (2002).
  • 90) Bender, J., and Fink, G. R., Epigenetic control of an endogenous gene family is revealed by a novel blue fluorescent mutant of Arabidopsis. Cell, 83, 725–734 (1995).
  • 91) Melquist, S., Luff, B., and Bender, J., Arabidopsis PAI gene arrangements, cytosine methylation and expression. Genetics, 153, 401–413 (1999).
  • 92) Gutiérrez-Marcos, J. F., Costa, L. M., Prà, M. D., Scholten, S., Kranz, E., Perez, P., and Dickinson, H. G., Epigenetic asymmetry of imprinted genes in plant gametes. Nat. Genet., 38, 876–878 (2006).
  • 93) Kinoshita, T., Yadegari, R., Harada, J. J., Goldberg, R. B., and Fischer, R. L., Imprinting of the MEDEA polycomb gene in the Arabidopsis endosperm. Plant Cell, 10, 521–523 (1999).
  • 94) Luo, M., Bilodeau, P., Dennis, E. S., Peacock, W. J., and Chaudhury, A., Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. Proc. Natl. Acad. Sci. USA, 97, 10637–10642 (2000).
  • 95) Ville-Calzada, J. P., Thomas, J., Spillane, C., Coluccio, A., Hoeppner, M. A., and Grossniklaus, U., Maintenance of genomic imprinting at the Arabidopsis medea locus requires zygotic DDM1 activity. Genes Dev., 13, 2971–2982 (1999).
  • 96) Yadegari, R., Kinoshita, T., Lotan, O., Cohen, G., Katz, A., Choi, Y., Katz, A., Nakashima, K., Harada, J. J., Goldberg, R. B., Fischer, R. L., and Ohad, N., Mutations in the FIE and MEA genes that encode interacting polycomb proteins cause parent-of-origin effects on seed development by distinct mechanisms. Plant Cell, 12, 2367–2382 (2000).
  • 97) Grossniklaus, U., Vielle-Calzada, J.-P., Hoeppner, M. A., and Gagliano, W. B., Maternal control of embryogenesis by MEDEA, a Polycomb-group gene in Arabidopsis. Science, 280, 446–450 (1998).
  • 98) Baroux, C., Gagliardini, V., Page, D. R., and Grossniklaus, U., Dynamic regulatory interactions of Polycomb group genes: MEDEA autoregulation is required for imprinted gene expression in Arabidopsis. Genes Dev., 20, 1081–1086 (2006).
  • 99) Jullien, P. E., Kinoshita, T., Ohad, N., and Berger, F., Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting. Plant Cell, 18, 1360–1372 (2006).
  • 100) Choi, Y., Gehring, M., Johnson, L., Hannon, M., Harada, J. J., Goldberg, R. B., Jacobsen, S. E., and Fischer, R. L., DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell, 110, 33–42 (2002).
  • 101) Bruner, S. D., Norman, D. P. G., and Verdine, G. L., Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature, 403, 859–866 (2000).
  • 102) Jiricny, J., An APE that proofreads. Nature, 415, 593–594 (2002).
  • 103) Haun, W. J., Laoueillé-Duprat, S., O’Connell, M. J., Spillane, C., Grossniklaus, U., Phillips, A. R., Kaeppler, S. M., and Springer, N. M., Genomic imprinting, methylation and molecular evolution of maize Enhancer of zeste (Mez) homologs. Plant J., 49, 325–337 (2007).
  • 104) Reik, W., Dean, W., and Walker, J., Epigenetic reprogramming in mammalian development. Science, 293, 1089–1093 (2001).
  • 105) Brink, R. A., Paramutation. Annu. Rev. Genet., 7, 129–152 (1973).
  • 106) Colot, V., Maloisel, L., and Rossignol, J. L., Interchromosomal transfer of epigenetic states in Ascobolus: transfer of DNA methylation is mechanistically related to homologous recombination. Cell, 86, 855–864 (1996).
  • 107) Chandler, V. L., and Stam, M., Chromatin conversations: mechanisms and implications of paramutation. Nat. Rev. Genet., 5, 532–544 (2004).
  • 108) Stam, M., Belele, C., Dorweiler, J. E., and Chandler, V. L., Differential chromatin structure within a tandem array 100 kb upstream of the maize b1 locus is associated with paramutation. Genes Dev., 16, 1906–1918 (2002a).
  • 109) Stam, M., Belele, C., Ramakrishna, W., Dorweiler, J. E., Bennetzen, J. L., and Chandler, V. L., The regulatory regions required for B′ paramutation and expression are located far upstream of the Maize b1 transcribed sequences. Genetics, 162, 917–930 (2002b).
  • 110) Patterson, G. I., Thorpe, C. J., and Chandler, V. L., Paramutation, an allelic interaction, is associated with a stable and heritable reduction of transcription of the maize b regulatory gene. Genetics, 135, 881–894 (1993).
  • 111) Chandler, V. L., Eggleston, W. B., and Dorweiler, J. E., Paramutation in maize. Plant Mol. Biol., 43, 121–145 (2000).
  • 112) Walker, E. L., and Panavas, T., Structural features and methylation patterns associated with paramutation at the r1 locus of Zea maize. Genetics, 159, 1201–1215 (2001).
  • 113) Dorweiler, J. E., Carey, C. C., Kubo, K. M., Hollick, J. B., Kermicle, J. L., and Chandler, V. L., mediator of paramutation1 is required for establishment and maintenance of paramutation at multiple maize loci. Plant Cell, 12, 2101–2118 (2000).
  • 114) Lisch, D., Carey, C. C., Dorweiler, J. E., and Chandler, V. L., A mutant that prevents paramutation in maize also reverses Mutator transposon methylation and silencing. Proc. Natl. Acad. Sci. USA, 99, 6130–6135 (2002).
  • 115) Alleman, M., Sidorenko, L., McGinnis, K., Seshadri, V., Dorweiler, J. E., White, L., Sikkink, K., and Chandler, V. L., An RNA-dependent RNA polymerase is required for paramutation in maize. Nature, 442, 295–298 (2006).
  • 116) Grummt, I., and Pikaard, C. S., Epigenetic silencing of RNA polymerase I transcription. Nat. Rev. Mol. Cell Biol., 4, 641–649 (2003).
  • 117) Rivin, C. J., Cullis, C. A., and Walbot, V., Evaluating quantitative variation in the genome of Zea mays. Genetics, 113, 1009–1019 (1986).
  • 118) McStay, B., Nucleolar dominance: a model for rRNA gene silencing. Genes Dev., 20, 1207–1214 (2006).
  • 119) Chen, Z. J., and Pikaard, C. S., Transcriptional analysis of nucleolar dominance in polyploidy plants: biased expression/silencing of progenitor rRNA genes is developmentally regulated in Brassica. Proc. Natl. Acad. Sci. USA, 94, 3442–3447 (1997a).
  • 120) Chen, Z. J., Comai, L., and Pikaard, C. S., Gene dosage and stochastic effects determine the severity and direction of uniparental ribosomal RNA gene silencing (nucleolar dominance) in Arabidopsis allopolyploids. Proc. Natl. Acad. Sci. USA, 95, 14891–14896 (1998).
  • 121) Durica, D. S., and Kindler, H. M., Studies on the ribosomal RNA cistrons in interspecific Drosophila hybrids. Dev. Biol., 59, 62–74 (1977).
  • 122) Croce, C. M., Talavera, A., Basilico, C., and Miller, O. J., Suppression of production of mouse 28S ribosomal RNA in mouse-human hybrids segregating mouse chromosomes. Proc. Natl. Acad. Sci. USA, 74, 694–697 (1997).
  • 123) Brannon, C. I., and Bartolomei, M. S., Mechanisms of genomic imprinting. Curr. Opin. Genet. Dev., 9, 164–170 (1999).
  • 124) Heard, E., Clerc, P., and Avner, P., X-chromosome inactivation in mammals. Annu. Rev. Genet., 31, 571–610 (1997).
  • 125) Chen, Z. J., and Pikaard, C. S., Epigenetic silencing of RNA polymerase I transcription: a role for DNA methylation and histone modification in nucleolar dominance. Genes Dev., 11, 2124–2136 (1997b).
  • 126) Lawrence, R. J., Earley, K., Pontes, O., Silva, M., Chen, Z. J., Neves, N., Viegas, W., and Pikaard, C. S., A concerted DNA methylation/histone methylation switch regulates rRNA gene dosage control and nucleolar dominance. Mol. Cell, 13, 599–609 (2004).
  • 127) Earley, K., Lawrence, R. J., Pontes, O., Reuther, R., Enciso, A. J., Silva, M., Neves, N., Gross, M., Viegas, W., and Pikaard, C. S., Erasure of histone acetylation by Arabidopsis HDA6 mediates large-scale gene silencing in nucleolar dominance. Genes Dev., 20, 1283–1293 (2006).
  • 128) Groshal, K., Majumder, S., Datta, J., Motiwala, T., Bai, S., Sharma, S. M., Frankel, W., and Jacob, S. T., Role of human ribosomal RNA (rRNA) promoter methylation and of methyl-CpG-binding protein MBD2 in the suppression of rRNA gene expression. J. Biol. Chem., 279, 6783–6793 (2004).
  • 129) Feng, Q., and Zhang, Y., The McCP1 complex represses transcription through preferential binding, remodeling, and deacetylating methylated nucleosomes. Genes Dev., 15, 827–832 (2001).
  • 130) de Nettancourt, D., “Incompatibility in Angiosperms,” Springer-Verlag, Berlin, Heidelberg, pp. 1–230 (1977).
  • 131) Stein, J. C., Howlett, B., Boyes, D. C., Nasrallah, M. E., and Nasrallah, J. B., Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea. Proc. Natl. Acad. Sci. USA, 88, 8816–8820 (1991).
  • 132) Suzuki, G., Kai, N., Hirose, T., Fukui, K., Nishio, T., Takayama, S., Isogai, A., Watanabe, M., and Hinata, K., Genomic organization of the S locus: identification and characterization of genes in SLG/SRK region of S 9 haplotype of Brassica campestris (syn. rapa). Genetics, 153, 391–400 (1999).
  • 133) Schopfer, C. R., Nasrallah, M. E., and Nasrallah, J. B., The male determinant of self-incompatibility in Brassica. Science, 286, 1697–1700 (1999).
  • 134) Takasaki, T., Hatakeyama, K., Suzuki, G., Watanabe, M., Isogai, A., and Hinata, K., The S receptor kinase determines self-incompatibility in Brassica stigma. Nature, 403, 913–916 (2000).
  • 135) Takayama, S., Shiba, H., Iwano, M., Shimosato, H., Che, F.-S., Kai, N., Watanabe, M., Suzuki, G., Hinata, H., and Isogai, A., The pollen determinant of self-incompatibility in Brassica campestris. Proc. Natl. Acad. Sci. USA, 97, 1920–1925 (2000).
  • 136) Shiba, H., Takayama, S., Iwano, M., Shimosato, H., Funato, M., Nakagawa, T., Che, F.-S., Suzuki, G., Watanabe, M., Hinata, K., and Isogai, A., A pollen coat protein, SP11/SCR, determines the pollen S-specificity in the self-incompatibility of Brassica species. Plant Physiol., 125, 2095–2103 (2001).
  • 137) Iwano, M., Shiba, H., Funato, M., Shimosato, H., Takayama, S., and Isogai, A., Immunohistochemical studies on translocation of pollen S-haplotype determinant in self-incompatibility of Brassica rapa. Plant Cell Physiol., 44, 428–436 (2003).
  • 138) Thomson, K. F., and Taylor, J. P., Non-linear dominance relationships between S alleles. Heredity, 21, 345–362 (1966).
  • 139) Hatakeyama, K., Watanabe, M., Takasaki, T., Ojima, K., and Hinata, K., Dominance relationships between S alleles in self-incompatible Brassica campestris L. Heredity, 80, 241–247 (1998).
  • 140) Shiba, H., Iwano, M., Entani, T., Ishimoto, K., Che, F.-S., Satta, Y., Ito, A., Takada, Y., Watanabe, M., Isogai, A., and Takayama, S., The dominance of alleles controlling self-incompatibility in Brassica pollen is regulated at the RNA level. Plant Cell, 14, 491–504 (2002).
  • 141) Kakizaki, T., Takada, Y., Ito, A., Suzuki, G., Shiba, H., Takayama, S., Isogai, A., and Watanabe, M., Linear dominance relationship among four class-II haplotypes in pollen is determined by the expression of SP11 in Brassica self-incompatibility. Plant Cell Physiol., 44, 70–75 (2003).
  • 142) Kusaba, M., Tung, C.-W., Nasrallah, M. E., and Nasrallah, J. B., Monoallelic expression and dominance interactions in anthers of self-incompatible Arabidopsis lyrata. Plant Physiol., 128, 17–20 (2002).
  • 143) Cui, Y., Brugière, N., Jackman, L., Bi, Y.-M., and Rothstein, S. J., Structural and transcriptional comparative analysis of the S locus regions in two self-incompatible Brassica napus lines. Plant Cell, 11, 2217–2231 (1999).
  • 144) Shiba, H., Kenmochi, M., Sugihara, M., Iwano, M., Kawasaki, S., Suzuki, G., Watanabe, M., Isogai, A., and Takayama, S., Genomic organization of the S-locus region of the Brassica. Biosci. Biotechnol. Biochem., 67, 622–626 (2003).
  • 145) Fukai, E., Fujimoto, R., and Nishio, T., Genomic organization of the S core region and the S flanking regions of a class-II S haplotype in Brassica rapa. Mol. Gen. Genomics, 269, 361–369 (2003).
  • 146) Kakizaki, T., Takada, Y., Fujioka, T., Suzuki, G., Satta, Y., Shiba, H., Isogai, A., Takayama, S., and Watanabe, M., Comparative analysis of the S-intergenic region in class-II S haplotypes of self-incompatible Brassica rapa (syn. campestris). Genes Genet. Syst., 81, 63–67 (2006).
  • 147) Dalmy, T., Hamilton, A., Rudd, S., Angell, S., and Baulcombe, D. C., An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell, 101, 543–553 (2000).
  • 148) Depicker, A., and van Montagu, M., Post-transcriptional gene silencing in plants. Curr. Opin. Cell Biol., 9, 373–382 (1997).
  • 149) Matzke, M., Aufsatz, W., Kanno, T., Daxinger, L., Papp, I., Mette, M. F., and Matzke, A. J. M., Genetic analysis of RNA-mediated transcriptional gene silencing. Biochim. Biophys. Acta, 1677, 129–141 (2004).
  • 150) Lippman, Z., and Martienssen, R., The role of RNA interference in heterochromatic silencing. Nature, 431, 364–370 (2004).
  • 151) Pélissier, T., and Wassenegger, M., A DNA target of 30 bp is sufficient for RNA-directed DNA methylation. RNA, 6, 55–65 (2000).
  • 152) Yamada, K., Lim, J., Dale, J. M., Chen, H., Shinn, P., Palm, C. J., Southwick, A. M., Wu, H. C., Kim, C., Nguyen, M., Pham, P., Cheuk, R., Karlin-Newmann, G., Liu, S. X., Lam, B., Sakano, H., Wu, T., Yu, G., Miranda, M., Quach, H. L., Tripp, M., Chang, C. H., Lee, J. M., Toriumi, M., Chan, M. M. H., Tang, C. C., Onodera, C. S., Deng, J. M., Akiyama, K., Ansari, Y., Arakawa, T., Banh, J., Banno, F., Bowser, L., Brooks, S., Carninci, P., Chao, Q., Choy, N., Enju, A., Goldsmith, A. D., Gurjal, M., Hansen, N. F., Hayashizaki, Y., Johnson-Hopson, C., Hsuan, V. W., Iida, K., Karnes, M., Khan, S., Koesema, E., Ishida, J., Jiang, P. X., Jones, T., Kawai, J., Kamiya, A., Meyers, C., Nakajima, M., Narusaka, M., Seki, M., Sakurai, T., Satou, M., Tamse, R., Vaysberg, M., Wallender, E. K., Wong, C., Yamamura, Y., Yuan, S., Shinozaki, K., Davis, R. W., Theologis, A., and Ecker, J. R., Empirical analysis of transcriptional activity in the Arabidopsis genome. Science, 302, 842–846 (2003).
  • 153) Wang, X.-J., Gaasterland, T., and Chua, N.-H., Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana. Genome Biol., 6, R30 (2005).
  • 154) Wang, H., Chua, N.-H., and Wang, X.-J., Prediction of trans-antisense transcripts in Arabidopsis thaliana. Genome Biol., 7, R92 (2006).
  • 155) Suzuki, M., and Hayashizaki, Y., Mouse-centric comparative transcriptomics of protein coding and non-coding RNAs. BioEssays, 26, 833–843 (2004).
  • 156) Riken Genome Exploration Research Group and Genome Science Group (Genome Network Project Core Group) and the FANTOM consortium, Antisense transcription in the mammalian transcriptome. Science, 309, 1564–1566 (2005).
  • 157) Reinhart, B., and Bartel, D. P., Small RNAs correspond to centromere heterochromatic repeats. Science, 297, 1831 (2002).
  • 158) May, B. P., Lippman, Z. B., Fang, Y., Spector, D. L., and Martienssen, R. A., Differential regulation of strand-specific transcripts from Arabidopsis centromeric satellite repeats. PLoS Biol., 1, 705–714 (2005).
  • 159) Neumann, B., Kubicka, P., and Barlow, D. P., Characteristics of imprinted genes. Nat. Genet., 9, 12–13 (1995).
  • 160) Bartel, B., and Bartel, D. P., MicroRNAs: at the root of plant development? Plant Physiol., 132, 709–717 (2003).
  • 161) Borsani, O., Zhu, J., Verslues, P. E., Sunkar, R., and Zhu, J. K., Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell, 123, 1279–1291 (2005).
  • 162) Ng, P., Wei, C.-L., Sung, W.-K., Chiu, K. P., Lipovich, L., Ang, C. C., Gupta, S., Shahab, A., Ridwan, A., Wong, C. H., Liu, E. T., and Ruan, Y., Gene identification signature (GIS) analysis for transcriptome characterization and genome annotation. Nat. Methods, 2, 105–111 (2005).
  • 163) Berezikov, E., Thuemmler, F., van Laake, L. W., Kondova, I., Bontrop, R., Cuppen, E., and Plasterk, R. H. A., Diversity of microRNAs in human and chimpanzee brain. Nat. Genet., 38, 1375–1377 (2006).
  • 164) Henderson, I. R., Zhang, X., Lu, C., Johnson, L., Meyers, B. C., Green, P. J., and Jacobsen, S. E., Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat. Genet., 38, 721–725 (2006).
  • 165) Brink, R. A., A genetic change associated with the R locus in maize which is directed and potentially reversible. Genetics, 41, 872–890 (1956).
  • 166) Hollick, J. B., Patterson, G. I., Coe-Jr., E. H., Cone, K. C., and Chandler, V. L., Allelic interactions heritably alter the activity of a metastable maize pl allele. Genetics, 141, 709–719 (1995).
  • 167) Cocciolone, S. M., Chopra, S., Flint-Garcia, S. A., McMullen, M. D., and Peterson, T., Tissue-specific patterns of a maize Myb transcription factor are epigenetically regulated. Plant J., 27, 467–478 (2001).
  • 168) Banks, J. A., Masson, P., and Fedroff, N., Molecular mechanisms in the developmental regulation of the maize suppressor-mutator transposable element. Genes Dev., 2, 1364–1380 (1988).
  • 169) Iida, S., Morita, Y., Choi, J. D., Park, K. I., and Hoshino, A., Genetics and epigenetics in flower pigmentation associated with transposable elements in morning glories. Adv. Biophys., 38, 141–159 (2004).
  • 170) Cubas, P., Vincent, C., and Coen, E., An epigenetic mutation responsible for natural variation in floral symmetry. Nature, 401, 157–161 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.