181
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Chloroplast-Like Organelles Were Found in Enucleate Sieve Elements of Transgenic Plants Overexpressing a Proteinase Inhibitor

, , , , , , , & show all
Pages 2759-2765 | Received 07 Jun 2007, Accepted 06 Aug 2007, Published online: 22 May 2014

  • 1) Bryant, J., Green, T. R., Gurusaddaiah, T., and Ryan, C. A., Proteinase inhibitor II from potatoes: isolation and characterization of its protomer components. Biochemistry, 15, 3418–3424 (1976).
  • 2) Gustafson, G., and Ryan, C. A., Specificity of protein turnover in tomato leaves: accumulation of proteinase inhibitors, induced with the wound hormone, PIIF. J. Biol. Chem., 251, 7004–7010 (1976).
  • 3) Pearce, G., Johnson, S., and Ryan, C. A., Purification and characterization from tobacco (Nicotiana tabacum) leaves of six small, wound-inducible, proteinase isoinhibitors of the potato inhibitor II family. Plant Physiol., 102, 639–644 (1993).
  • 4) Xu, Z. F., Proteinase Inhibitor II from Solanum americanum, Molecular Characterization and Potential Use in Generating Insect-resistant Transgenic Vegetables. Ph.D. dissertation, The University of Hong Kong, Hong Kong, 2001, http://sunzi.lib.hku.hk/hkuto/record/B30252453.
  • 5) Sin, S. F., and Chye, M. L., Expression of proteinase inhibitor II proteins during floral development in Solanum americanum. Planta, 219, 1010–1022 (2004).
  • 6) Ryan, C. A., Proteinase inhibitor gene families: strategies for transformation to improve plant defenses against herbivores. BioEssays, 10, 20–24 (1989).
  • 7) Brzin, J., and Kidric, M., Proteinases and their inhibitors in plants: role in normal growth and in response to various stress conditions. Biotechnol. Genet. Eng. Rev., 13, 420–467 (1995).
  • 8) Pena-Cortes, H., Sanchez-Serrano, J., Rocha-Sosa, M., and Willmitzer, L., Systemic induction of proteinase-inhibitor-II gene expression in potato plants by wounding. Planta, 174, 84–89 (1988).
  • 9) Johnson, R., Narvaez, J., An, G., and Ryan, C., Expression of proteinase inhibitors I and II in transgenic tobacco plants: effects on natural defense against Manduca sexta larvae. Proc. Natl. Acad. Sci. USA, 86, 9871–9875 (1989).
  • 10) Duan, X., Li, X., Xue, Q., Abo-El-Saad, M., Xu, D., and Wu, R., Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant. Nat. Biotechnol., 14, 494–498 (1996).
  • 11) Klopfenstein, N. B., Allen, K. K., Avila, F. J., Heuchelin, S. A., Martinez, J., Carman, R. C., Hall, R. B., Hart, E. R., and McNabb, H. S., Proteinase inhibitor II gene in transgenic poplar: chemical and biological assays. Biomass and Bioenergy, 12, 299–311 (1997).
  • 12) Rosahl, S., Eckes, P., Schell, J., and Willmitzer, L., Organ-specific gene expression in potato: isolation and characterization of tuber-specific cDNA sequences. Mol. Gen. Genet., 202, 368–373 (1986).
  • 13) Sanchez-Serrano, J. J., Keil, M., O’Connor, A., Schell, J., and Willmitzer, L., Wound expression of a potato proteinase inhibitor II gene in transgenic tobacco plants. EMBO J., 6, 303–306 (1987).
  • 14) Hendriks, T., Vreugdenhil, D., and Stiekema, W. J., Patatin and four serine proteinase inhibitor genes are differentially expressed during potato tuber development. Plant Mol. Biol., 17, 385–394 (1991).
  • 15) Pena-Cortes, H., Willmitzer, L., and Sanchez-Serrano, J. J., Abscisic acid mediates wound induction but not developmental-specific expression of the proteinase inhibitor II gene family. Plant Cell, 3, 963–972 (1991).
  • 16) Lorberth, R., Dammann, C., Ebneth, M., Amati, S., and Sanchez-Serrano, J. J., Promoter elements involved in environmental and developmental control of potato proteinase inhibitor II expression. Plant J., 2, 477–486 (1992).
  • 17) Xu, Z. F., Qi, W. Q., Ouyang, X. Z., Yeung, E., and Chye, M. L., A proteinase inhibitor II of Solanum americanum is expressed in phloem. Plant Mol. Biol., 47, 727–738 (2001).
  • 18) Solomon, M., Belenghi, B., Delledonne, M., Menachem, E., and Levine, A., The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell, 11, 431–444 (1999).
  • 19) Xu, Z. F., Teng, W. L., and Chye, M. L., Inhibition of endogenous trypsin- and chymotrypsin-like activities in transgenic lettuce expressing heterogeneous proteinase inhibitor SaPIN2a. Planta, 218, 623–629 (2004).
  • 20) Sin, S. F., Yeung, E. C., and Chye, M. L., Downregulation of Solanum americanum genes encoding proteinase inhibitor II causes defective seed development. Plant J., 45, 58–70 (2006).
  • 21) Oparka, K. J., and Turgeon, R., Sieve elements and companion cells: traffic control centers of the phloem. Plant Cell, 11, 739–750 (1999).
  • 22) Wesley, S. V., Helliwell, C. A., Smith, N. A., Wang, M. B., Rouse, D. T., Liu, Q., Gooding, P. S., Singh, S. P., Abbott, D., Stoutjesdijk, P. A., Robinson, S. P., Gleave, A. P., Green, A. G., and Waterhouse, P. M., Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J., 27, 581–590 (2001).
  • 23) Gleave, A. P., A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol. Biol., 20, 1203–1207 (1992).
  • 24) Narvaez-Vasquez, J., Orozco-Cardenas, M. L., and Ryan, C. A., Differential expression of a chimeric CaMV-tomato proteinase Inhibitor I gene in leaves of transformed nightshade, tobacco and alfalfa plants. Plant Mol. Biol., 20, 1149–1157 (1992).
  • 25) Wu, Y., Llewellyn, D., Mathews, A., and Dennis, E. S., Adaptation of Helicoverpa armigera (Lepidoptera: Noctuidae) to a proteinase inhibitor expressed in transgenic tobacco. Mol. Breed., 3, 371–380 (1997).
  • 26) Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248–254 (1976).
  • 27) Hayat, M. A., “Basic Electron Microscopy Techniques,” Van Nostrand Reinhold, New York (1972).
  • 28) Weise, A., Barker, L., Kuhn, C., Lalonde, S., Buschmann, H., Frommer, W. B., and Ward, J. M., A new subfamily of sucrose transporters, SUT4, with low affinity/high capacity localized in enucleate sieve elements of plants. Plant Cell, 12, 1345–1355 (2000).
  • 29) Hightower, R., Baden, C., Penzes, E., Lund, P., and Dunsmuir, P., Expression of antifreeze proteins in transgenic plants. Plant Mol. Biol., 17, 1013–1021 (1991).
  • 30) Leborgne-Castel, N., Jelitto-Van Dooren, E. P., Crofts, A. J., and Denecke, J., Overexpression of BiP in tobacco alleviates endoplasmic reticulum stress. Plant Cell, 11, 459–470 (1999).
  • 31) Alvarez-Alfageme, F., Martinez, M., Pascual-Ruiz, S., Castanera, P., Diaz, I., and Ortego, F., Effects of potato plants expressing a barley cystatin on the predatory bug Podisus maculiventris via herbivorous prey feeding on the plant. Trans. Res., 16, 1–13 (2007).
  • 32) Jones, J. D., Dunsmuir, P., and Bedbrook, J., High level expression of introduced chimaeric genes in regenerated transformed plants. EMBO J., 4, 2411–2418 (1985).
  • 33) Florack, D. E., Dirkse, W. G., Visser, B., Heidekamp, F., and Stiekema, W. J., Expression of biologically active hordothionins in tobacco: effects of pre- and pro-sequences at the amino and carboxyl termini of the hordothionin precursor on mature protein expression and sorting. Plant Mol. Biol., 24, 83–96 (1994).
  • 34) Gatehouse, A., Davison, G., Newell, C., Merryweather, A., Hamilton, W., Burgess, E., Gilbert, R., and Gatehouse, J., Transgenic potato plants with enhanced resistance to the tomato moth, Lacanobia oleracea: growth room trials. Mol. Breed., 3, 49–63 (1997).
  • 35) Van Bel, A. J. E., The phloem, a miracle of ingenuity. Plant Cell Environ., 26, 125–149 (2003).
  • 36) Ruiz-Medrano, R., Xoconostle-Cazares, B., and Lucas, W. J., The phloem as a conduit for inter-organ communication. Curr. Opin. Plant Biol., 4, 202–209 (2001).
  • 37) Chen, X. Y., and Kim, J. Y., Transport of macromolecules through plasmodesmata and the phloem. Physiol. Plant., 126, 560–571 (2006).
  • 38) Lough, T. J., and Lucas, W. J., Integrative plant biology: role of phloem long-distance macromolecular trafficking. Annu. Rev. Plant Biol., 57, 203–232 (2006).
  • 39) Evert, R. F., Dicotyledons. In “Sieve Elements: Comparative Structure, Induction and Development,” eds. Behnke, H.-D., and Sjoluud, R. D., Springer-Verlag, New York, pp. 103–137 (1990).
  • 40) Sjolund, R. D., The phloem sieve element: a river runs through it. Plant Cell, 9, 1137–1146 (1997).
  • 41) Beers, E. P., Programmed cell death during plant growth and development. Cell Death Differ., 4, 649–661 (1997).
  • 42) Beers, E. P., Woffenden, B. J., and Zhao, C., Plant proteolytic enzymes: possible roles during programmed cell death. Plant Mol. Biol., 44, 399–415 (2000).
  • 43) Murray, C., and Christeller, J. T., Purification of a trypsin inhibitor (PFTI) from pumpkin fruit phloem exudate and isolation of putative trypsin and chymotrypsin inhibitor cDNA clones. Biol. Chem. Hoppe-Seyler, 376, 281–287 (1995).
  • 44) Habu, Y., Fukushima, H., Sakata, Y., Abe, H., and Funada, R., A gene encoding a major Kunitz proteinase inhibitor of storage organs of winged bean is also expressed in the phloem of stems. Plant Mol. Biol., 32, 1209–1213 (1996).
  • 45) Balachandran, S., Xiang, Y., Schobert, C., Thompson, G. A., and Lucas, W. J., Phloem sap proteins from Cucurbita maxima and Ricinus communis have the capacity to traffic cell to cell through plasmodesmata. Proc. Natl. Acad. Sci. USA, 94, 14150–14155 (1997).
  • 46) Kehr, J., Haebel, S., Blechschmidt-Schneider, S., Willmitzer, L., Steup, M., and Fisahn, J., Analysis of phloem protein patterns from different organs of Cucurbita maxima Duch. by matrix-assisted laser desorption/ionization time of flight mass spectroscopy combined with sodium dodecyl sulfate polyacrylamide gel electrophoresis. Planta, 207, 612–619 (1999).
  • 47) Yoo, B. C., Aoki, K., Xiang, Y., Campbell, L. R., Hull, R. J., Xoconostle-Cazares, B., Monzer, J., Lee, J. Y., Ullman, D. E., and Lucas, W. J., Characterization of Cucurbita maxima phloem serphin-1 (CmPS-1): a developmentally regulated elastase inhibitor. J. Biol. Chem., 275, 35122–35128 (2000).
  • 48) Dannenhoffer, J. M., Suhr, R. C., and Thompson, G. A., Phloem-specific expression of the pumpkin fruit trypsin inhibitor. Planta, 212, 155–162 (2001).
  • 49) Vilaine, F., Palauqui, J. C., Amselem, J., Kusiak, C., Lemoine, R., and Dinant, S., Towards deciphering phloem: a transcriptome analysis of the phloem of Apium graveolens. Plant J., 36, 67–81 (2003).
  • 50) Walz, C., Giavalisco, P., Schad, M., Juenger, M., Klose, J., and Kehr, J., Proteomics of curcurbit phloem exudate reveals a network of defence proteins. Phytochemistry, 65, 1795–1804 (2004).
  • 51) Petersen, M. L., Hejgaard, J., Thompson, G. A., and Schulz, A., Cucurbit phloem serpins are graft-transmissible and appear to be resistant to turnover in the sieve element-companion cell complex. J. Exp. Bot., 56, 3111–3120 (2005).
  • 52) Giavalisco, P., Kapitza, K., Kolasa, A., Buhtz, A., and Kehr, J., Towards the proteome of Brassica napus phloem sap. Proteomics, 6, 896–909 (2006).
  • 53) Behnke, H. D., Sieve-tube plastids of Magnoliidae and Ranunculidae in relation to systematics. Taxon, 20, 723–730 (1971).
  • 54) Sakamoto, W., Protein degradation machineries in plastids. Ann. Rev. Plant Biol., 57, 599–621 (2006).
  • 55) Lopez-Juez, E., Plastid biogenesis, between light and shadows. J. Exp. Bot., 58, 11–26 (2007).
  • 56) Wang, Z.-Y., Ding, L.-W., Ge, Z.-J., Wang, Z., Wang, F., Li, N., and Xu, Z.-F., Purification and characterization of native and recombinant SaPIN2a, a plant sieve element-localized proteinase inhibitor. Plant Physiol. Biochem., 45, 757–766 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.