292
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Asymmetric Total Synthesis of ent-Sandaracopimaradiene, a Biosynthetic Intermediate of Oryzalexins

, , &
Pages 2822-2829 | Received 24 Jul 2007, Accepted 08 Aug 2007, Published online: 22 May 2014

  • 1) Cartwright, D., Langcake, P., Pryce, R. J., Leworthy, D. P., and Ride, J. P., Chemical activation of host defence mechanisms as a basis for crop protection. Nature, 267, 511–513 (1977).
  • 2) Kato, T., Kabuto, C., Sasaki, N., Tsunagawa, M., Aizawa, H., Fujita, K., Kato, Y., and Kitahara, Y., Momilactones, growth inhibitors from rice, Oryza sativa L. Tetrahedron Lett., 39, 3861–3864 (1973).
  • 3) Cartwright, D. W., Langcake, P. W., Pryce, R. J., Leworthy, D. P., and Ride, J. P., Isolation and characterization of two phytoalexins from rice as momilactones A and B. Phytochemistry, 20, 535–537 (1981).
  • 4) Akatsuka, T., Takahashi, N., Kodama, O., Sekido, H., Kono, Y., and Takeuchi, S., Novel phytoalexins (oryzalexins A, B and C) isolated from rice blast leaves infected with Pyricularia oryzae. Part 1: Isolation, characterization and biological activities of oryzalexins. Agric. Biol. Chem., 49, 1689–1694 (1985).
  • 5) Sekido, H., Endo, T., Suga, R., Kodama, O., Akatuka, T., Kono, Y., and Takeuchi, S., Oryzalexin D (3,7-dihydroxy-(+)-sandaracopimaradiene), a new phytoalexin isolated from blast-infected rice leaves. J. Pestic. Sci., 11, 369–372 (1986).
  • 6) Kato, H., Kodama, O., and Akatsuka, T., Oryzalexin E, a diterpene phytoalexin from UV-irradiated rice leaves. Phytochemistry, 33, 79–81 (1993).
  • 7) Kato, H., Kodama, O., and Akatsuka, T., Oryzalexin F, a diterpene phytoalexin from UV-irradiated rice leaves. Phytochemistry, 36, 299–301 (1994).
  • 8) Tamogami, S., Mitani, M., Kodama, O., and Akatsuka, T., Oryzalexin S structure: a new stemarane-type rice plant phytoalexin and its biogenesis. Tetrahedron, 49, 2025–2032 (1993).
  • 9) Koga, J., Shimura, M., Oshima, K., Ogawa, N., Yamauchi, T., and Ogasawara, N., Phytocassanes A, B, C and D, novel diterpene phytoalexins from rice, Oryza sativa, L. Tetrahedron, 51, 7907–7918 (1995).
  • 10) Koga, J., Ogawa, N., Yamauchi, T., Kikuchi, N., Ogasawara, N., and Shimura, M., Functional moiety for the antifungal activity of phytocassane E, a diterpene phytoalexin from rice. Phytochemistry, 44, 249–253 (1997).
  • 11) MacMillan, J., and Beale, M. H., Diterpene biosynthesis. In “Comprehensive Natural Products Chemistry No. 2, Isoprenoid Including Carotenoids and Steroids,” eds. Barton, S. D., and Nakanishi, K., Elsevier Science, Oxford, pp. 217–243 (1999).
  • 12) Wickham, K. A., and West, C. A., Biosynthesis of rice phytoalexins: identification of putative diterpene hydrocarbon precursors. Arch. Biochem. Biophys., 293, 320–332 (1992).
  • 13) Cho, E.-M., Okada, A., Kenmoku, H., Otomo, K., Toyomasu, T., Mitsuhashi, W., Sassa, T., Yajima, A., Yabuta, G., Mori, K., Oikawa, H., Toshima, H., Shibuya, N., Nojiri, H., Omori, T., Nishiyama, M., and Yamane, H., Molecular cloning and characterization of a cDNA encoding ent-cassa-12,15-diene synthase, from suspension-cultured rice cells treated with a chitin elicitor. Plant J., 37, 1–8 (2004).
  • 14) Mohan, R. S., Yee, N. K. N., Coates, R. M., Ren, Y. Y., Stamenkovic, P., Mendez, I., and West, C. A., Biosynthesis of cyclic diterpene hydrocarbons in rice cell suspensions: conversion of 9,10-syn-labda-8(17),13-dienyl diphosphate to 9β-pimara-7,15-diene and stemar-13-ene. Arch. Biochem. Biophys., 330, 33–47 (1996).
  • 15) Xu, M., Hillwig, M. L., Prisic, S., Coates, R. M., and Peters, R. J., Functional identification of rice syn-copalyl diphosphate synthase and its role in initiating biosynthesis of diterpenoid phytoalexin/allelopathic natural products. Plant J., 39, 309–318 (2004).
  • 16) Otomo, K., Kenmoku, H., Oikawa, H., König, W. A., Toshima, H., Mitsuhashi, W., Yamane, H., Sassa, T., and Toyomasu, T., Biological functions of ent- and syn-copalyl diphosphate synthases in rice: key enzymes for the branch point of gibberellin and phytoalexin biosynthesis. Plant J., 39, 886–893 (2004).
  • 17) Prisic, S., Xu, M., Wilderman, P. R., and Peters, R. J., Rice contains two disparate ent-copalyl diphosphate synthases with distinct metabolic functions. Plant Physiol., 136, 4228–4236 (2004).
  • 18) Wilderman, P. R., Xu, M., Jin, Y., Coates, R. M., and Peters, R. J., Identification of syn-pimara-7,15-diene synthase reveals functional clustering of terpene synthases involved in rice phytoalexin/allelochemical biosynthesis. Plant Physiol., 135, 2098–2105 (2004).
  • 19) Otomo, K., Kanno, Y., Motegi, A., Kenmoku, H., Yamane, H., Mitsuhashi, W., Oikawa, H., Toshima, H., Itoh, H., Matsuoka, M., Sassa, T., and Toyomasu, T., Diterpene cyclases responsible for the biosynthesis of phytoalexins, momilactones A, B, and oryzalexins A–F in rice. Biosci. Biotechnol. Biochem., 68, 2001–2006 (2004).
  • 20) Nemoto, T., Cho, E.-M., Okada, A., Okada, K., Otomo, K., Kanno, Y., Toyomasu, T., Mitsuhashi, W., Sassa, T., Minami, E., Shibuya, N., Nishiyama, M., Nojiri, H., and Yamane, H., Stemar-13-ene synthase, a diterpene cyclase involved in the biosynthesis of the phytoalexin oryzalexin S in rice. FEBS Lett., 571, 182–186 (2004).
  • 21) Yajima, A., Mori, K., and Yabuta, G., Total synthesis of ent-cassa-12,15-diene, a putative precursor of rice phytoalexins, phytocassanes A–E. Tetrahedron Lett., 45, 167–169 (2004).
  • 22) Atawong, A., Hasegawa, M., and Kodama, O., Biosynthesis of rice phytoalexin: enzymatic conversion of 3β-hydroxy-9β-pimara-7,15-diene-19,6β-olide to momilactone A. Biosci. Biotechnol. Biochem., 66, 566–570 (2002).
  • 23) Ireland, R. E., and Schiess, P. W., The synthesis of dl-sandaracopimaradiene, dl-pimaradiene and some observations on the structure of rimuene. Tetrahedron Lett., 37–43 (1960).
  • 24) Ireland, R. E., and Schiess, P., Experiments directed toward the total synthesis of terpenes. IV. The synthesis of (±)-sandaracopimaradiene and (±)-pimaradiene. J. Org. Chem., 28, 6–16 (1963).
  • 25) Johnston, P., Sheppard, R. C., Stehr, C. E., and Turner, S., The synthesis of (−)-sandaracopimaradiene from androstane derivatives. J. Chem. Soc. (C), 1847–1856 (1966).
  • 26) Fétizon, M., and Golfier, M., Corrélation entre stéroïdes et diterpénes du groupe pimarique. Synthése du sandaracopimaradiéne. Bull. Chim. Soc. Fr., 870–875 (1966).
  • 27) Miyaura, N., and Suzuki, A., Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev., 95, 2457–2483 (1995).
  • 28) Yajima, A., Yamaguchi, A., Saitou, F., Nukada, T., and Yabuta, G., Asymmetric synthesis of abietane diterpenoids via B-alkyl Suzuki-Miyaura coupling. Formal total asymmetric synthesis of 12-deoxyroyleanone and cryptoquinone. Tetrahedron, 63, 1080–1084 (2007).
  • 29) Mori, K., and Puapoomchareon, P., Preparative bioorganic chemistry, XV. Preparation of optically pure 2,4,4-trimethyl-2-cyclohexen-1-ol, a new and versatile chiral building block in terpene synthesis. Liebigs Ann. Chem., 1053–1056 (1991).
  • 30) Yajima, A., Takikawa, H., and Mori, K., Synthesis of mono- and sesquiterpenoids, part XXV. Synthesis of (6R *,7R *)-7-hydroxy-6,11-cyclofarnes-3(15)-en-2-one, the racemate of the antibacterial sesquiterpene from Premna oligotricha, and its (6R *,7S *) isomer. Liebigs Ann., 891–897 (1996).
  • 31) Bennett, C. J., Caldwell, S. T., McPhail, D. B., Morrice, P. C., Duthie, G. G., and Hartley, R. C., Potential therapeutic antioxidants that combine the radical scavenging ability of myricetin and the lipophilic chain of vitamin E to effectively inhibit microsomal lipid peroxidation. Bioorg. Med. Chem., 12, 2079–2098 (2004).
  • 32) Ishihara, K., Ishibashi, H., and Yamamoto, H., Enantio- and diastereoselective stepwise cyclization of polyprenoids induced by chiral and achiral LBAs. A new entry to (−)-ambrox, (+)-podocarpa-8,11,13-triene diterpenoids, and (−)-tetracyclic polyprenoid of sedimentary origin. J. Am. Chem. Soc., 124, 3647–3655 (2002).
  • 33) Matsumoto, T., and Usui, S., A simple total synthesis of (+)-feruginol, (+)-semperviol, and (+)-podocarpa-8(14)-en-13-one. Bull. Chem. Soc. Jpn., 52, 212–215 (1979).
  • 34) Goldsmith, D., The total synthesis of tri- and tetracyclic diterpenes. In “The Total Synthesis of Natural Products” Vol. 8, ed. ApSimon, J., John Wiley & Sons, New York, pp. 1–243 (1992).
  • 35) Grant, P. K., and Hodges, R., Oxidation products of manool. J. Chem. Soc., 5274–5275 (1960).
  • 36) Mahn, D. D. K., Fetizon, M., and Flament, J. P., Synthese de diterpenes tetracycliques du type hibane. Tetrahedron, 31, 1897–1902 (1975).
  • 37) Abad, A., Arno, M., Domingo, L. R., and Zaragoza, R. J., Synthesis of (+)-podocarp-8(14)-en-13-one and methyl (+)-13-oxo-podocarp-8(14)-en-18-oate from abietic acid. Tetrahedron, 41, 4937–4940 (1985).
  • 38) Nerinckx, W., and Vandewalle, M., Asymmetric alkylation of α-aryl substituted carbonyl compounds by means of chiral phase transfer catalysts. Applications for the synthesis of (+)-podocarp-8(14)-en-13-one and of (−)-Wy-16,225, a potent analgesic agent. Tetrahedron: Asymmetry, 1, 265–276 (1990).
  • 39) Ohloff, G., Vial, C., Wolf, H. R., Job, K., Jégou, E., Polonsky, J., and Lederer, E., Stereochemistry-odor relationships in enantiomeric ambergris fragrance. Helv. Chim. Acta, 63, 1932–1946 (1980).
  • 40) Comins, D. L., and Dehghani, A., Pyridine-derived triflating reagents: an improved preparation of vinyl triflates from metallo enolates. Tetrahedron Lett., 33, 6299–6302 (1992).
  • 41) Cacchi, S., Morera, E., and Ortar, G., Palladium-catalyzed carbonylation of enol triflates. A novel method for one-carbon homologation of ketones to α,β-unsaturated carboxylic acid derivatives. Tetrahedron Lett., 26, 1109–1112 (1985).
  • 42) Dess, D. B., and Martin, J. C., Readily accessible 12-I-5 oxidant for the conversion of primary and secondary alcohols to aldehydes and ketones. J. Org. Chem., 48, 4155–4156 (1983).
  • 43) Mori, K., and Waku, M., Synthesis of oryzalexins A, B and C, the diterpenoidal phytoalexins isolated from rice blast leaves infected with Pyricularia oryzae. Tetrahedron, 41, 5653–5660 (1985).
  • 44) Glasby, J. S., “Encyclopedia of the Terpenoids,” John Wiley & Sons, New York, pp. 1–2098 (1982).
  • 45) Kenmoku, H., Tanaka, M., Ogiyama, K., Kato, N., and Sassa, T., Identification of (+)-phyllocladene, (−)-sandaracopimaradiene, and (+)-kaurene as new fungal metabolites from fusicoccin-producing Phomopsis amygdali F6. Biosci. Biotechnol. Biochem., 68, 1574–1577 (2004).
  • 46) Barltrop, J. A., Giles, D., Hanson, J. R., and Rogers, N. A., The synthesis of diterpenes. Part V. An intermediate for the synthesis of the pimaradienes. J. Chem. Soc., 2534–2536 (1962).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.