466
Views
39
CrossRef citations to date
0
Altmetric
Original Articles

Potato and Soy Peptide Diets Modulate Lipid Metabolism in Rats

, , , , , , , , , & show all
Pages 943-950 | Received 18 Sep 2007, Accepted 23 Dec 2007, Published online: 22 May 2014

  • 1) Korhonen, H., and Pihlanto, A., Food-derived bioactive peptides-opportunities for designing future foods. Curr. Pharm. Des., 9, 1297–1308 (2003).
  • 2) Bakhit, R. M., Klein, B. P., Essex-Sorlie, D., Ham, J. O., Erdman Jr., J. W., and Potter, S. M., Intake of 25 g of soybean protein reduces plasma cholesterol in men with elevated cholesterol concentrations. J. Nutr., 124, 213–222 (1994).
  • 3) Anderson, J. W., Johnstone, B. M., and Cook-Newell, M. E., Meta-analysis of effects of soy protein intake on serum lipids in humans. N. Engl. J. Med., 333, 276–282 (1995).
  • 4) Sirtori, C. R., Lovati, M. R., Manzoni, C., Gianazza, E., Bondioli, A., Staels, B., and Auwerx, J., Reduction of serum cholesterol by soybean proteins: clinical experience and potential molecular mechanisms. Nutr. Metab. Cardiovasc. Dis., 8, 334–340 (1998).
  • 5) Lovati, M. R., Manzoni, C., Gianazza, E., Arnoldi, A., Kurowska, E., Carroll, K. K., and Sirtori, C. R., Soy protein peptides regulate cholesterol homeostasis in Hep G2 cells. J. Nutr., 130, 2543–2549 (2000).
  • 6) Morita, T., Oh-hashi, A., Takei, K., Ikai, M., Kasaoka, S., and Kiriyama, S., Cholesterol-lowering effects of soybean, potato and rice proteins depend on their low methionine contents in rats fed a cholesterol-free purified diet. J. Nutr., 127, 470–477 (1997).
  • 7) Nagaoka, S., Miwa, K., Eto, M., Kuzuya, Y., Hori, G., and Yamamoto, K., Soy protein peptic hydrolysate with bound phospholipids decreases micellar solubility and cholesterol absorption in rats and Caco-2 cells. J. Nutr., 129, 1725–1730 (1999).
  • 8) Tomotake, H., Shimaoka, I., Kayashita, J., Yokoyama, F., Nakajoh, M., and Kato, N., A buckwheat protein product suppresses gallstone formation and plasma cholesterol more strongly than soy protein isolate in hamsters. J. Nutr., 130, 1670–1674 (2000).
  • 9) Gianazza, E., Eberini, I., Arnold, I. A., Wait, R., and Sirtori, C. R., A proteomic investigation of isolated soy proteins with variable effects in experimental and clinical studies. J. Nutr., 133, 9–14 (2003).
  • 10) Carroll, K. K., Review of clinical studies on cholesterol-lowering response to soy protein. J. Am. Diet. Assoc., 91, 820–827 (1991).
  • 11) Wagner, J. D., Cefalu, W. T., Anthony, M. S., Litwak, K. N., Zhang, L., and Clarkson, T. B., Dietary soy protein and estrogen replacement therapy improve cardiovascular risk factors and decrease aortic cholesteryl ester content in ovariectomized Cynomolgus monkeys. Metabolism, 46, 698–705 (1997).
  • 12) Keinan Boker, L., Peeters, P. H. M., Mulligan, A. A., Navarro, C., and Slimani, N., Consumption of soybean products in 10 European countries [abstract]. Fourth International Symposium on the Role of Soy in Preventing and Treating Chronic Disease. J. Nutr., 132, s589 (2002).
  • 13) Pena-Ramos, E. A., and Xiong, Y. L., Antioxidant activity of soy protein in hydrolysates in a liposomal system. J. Food Sci., 67, 2952–2956 (2002).
  • 14) Kim, S. E., Kim, H. H., Kim, J. Y., Kang, Y. I., Woo, H. J., and Lee, H. J., Anticancer activity of hydrophobic peptides from soy proteins. BioFactors, 12, 151–155 (2000).
  • 15) Wu, J., and Ding, X., Hypotensive and physiological effect of angiotensin converting enzyme inhibitory peptides derived from soy protein on spontaneously hypertensive rats. J. Agric. Food Chem., 49, 501–506 (2001).
  • 16) Aoyama, T., Fukui, K., Nakamori, T., Hashimoto, Y., Yamamoto, T., Takamatsu, K., and Sugano, M., Effects of soy and milk whey protein isolates and their hydrolysates on weight reduction in genetically obese mice. Biosci. Biotechnol. Biochem., 64, 2594–2600 (2000).
  • 17) National Research Council, http://grants.nih.gov/grants/olaw/tutorial/relavant.htm
  • 18) “Official Methods of Analysis of the Association of Official Analytical Chemists” 15th ed., AOAC, Arlington, 920.87, 920.85, 925.10, 923.03 (1990).
  • 19) Folch, J., Lees, M., and Sloane Stanley, J. H., A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem., 226, 497–509 (1957).
  • 20) Matsubara, Y., Sawabe, A., and Iizuka, Y., Structures of new linoroid glycosides in lemon (Citrus limon Burm. f.) peelings. Agric. Biol. Chem., 54, 1143–1148 (1990).
  • 21) Grundy, S. M., Ahrens Jr., E. H., and Miettinen, T. A., Quantitative isolation and gas-liquid chromatographic analysis of total fecal bile acids. J. Lipid Res., 6, 397–410 (1965).
  • 22) Chomczynski, P., and Sacchi, N., Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem., 162, 156–159 (1987).
  • 23) Fukushima, M., Ohashi, T., Fujiwara, Y., Sonoyama, K., and Nakano, M., Cholesterol-loweing effects of maitake (Grifola frondosa) fiber, shiitake (Lentinus edodes) fiber, and enokitake (Flammulia velutipes) fiber in rats. Exp. Biol. Med., 226, 758–765 (2001).
  • 24) Ohba, K., Fukushima, M., Han, K. H., Tamura, A., Watanabe, S., Hashimoto, N., Shimada, K., Chiji, H., and Sekikawa, M., Fat- and cholesterol-enriched diet feeding affects gene expression related to cholesterol metabolism in rats. J. Oleo Sci., 54, 453–459 (2005).
  • 25) Morita, T., Kasaoka, S., Oh-hashi, A., Ikai, M., Yoso, N., and Kiriyama, S., Resistant proteins alter cecal short-chain fatty acid profiles in rats fed high amylase cornstarch. J. Nutr., 128, 1156–1164 (1998).
  • 26) Sawashita, N., Naemura, A., Shimizu, M., Morimatsu, F., Ijiri, Y., and Yamamoto, J., Effect of dietary vegetable and animal proteins on thrombosis in mice. Nutrition, 22, 661–667 (2006).
  • 27) Nishi, T., Hara, H., Asano, K., and Tomita, F., The soybean beta-conglycinin beta 51–63 fragment suppresses appetite by stimulating cholecystokinin release in rats. J. Nutr., 133, 2537–2542 (2003).
  • 28) Nagaoka, S., Awano, T., Nagata, N., Masaoka, M., Hori, G., and Hashimoto, K., Serum cholesterol reduction and cholesterol absorption inhibition in CaCo-2 cells by a soyprotein peptic hydrolyzate. Biosci. Biotechnol. Biochem., 61, 354–356 (1997).
  • 29) Sugano, M., and Goto, S., Steroid-binding peptides from dietary proteins. J. Nutr. Sci. Vitaminol. (Tokyo), 36 (Suppl 2) S, 147–150 (1990).
  • 30) Nagaoka, S., Futamura, Y., Miwa, K., Awano, T., Yamauchi, K., Kanamaru, Y., Tadashi, K., and Kuwata, T., Identification of novel hypocholesterolemic peptides derived from bovine milk beta lactoglobulin. Biochem. Biophys. Res. Commun., 281, 11–17 (2001).
  • 31) Han, K. H., Sekikawa, M., Shimada, K., Sasaki, K., Ohba, K., and Fukushima, M., Resistant starch fraction prepared from kintoki bean affects gene expression of genes associated with cholesterol metabolism in rats. Exp. Biol. Med., 229, 787–792 (2004).
  • 32) Ascencio, C., Torres, N., Isoard-Acosta, F., Gomez-Perez, F. J., Hernandez-Pando, R., and Tovar, A. R., Soy protein affects serum insulin and hepatic SREBP-1 mRNA and reduces fatty liver in rats. J. Nutr., 134, 522–529 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.