208
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Effects of the Antlered Form of Ganoderma lucidum on Tumor Growth and Metastasis in Cyclophosphamide-Treated Mice

, , , , &
Pages 1399-1408 | Received 25 Sep 2007, Accepted 31 Jan 2008, Published online: 22 May 2014

  • 1) Allison, A. C., Immunosuppressive drugs: the first 50 years and a glance forward. Immunopharmacology, 47, 63–83 (2000).
  • 2) Tsung, K., Meko, J. B., Tsung, Y. L., Peplinski, G. R., and Norton, J. A., Immune response against large tumors eradicated by treatment with cyclophosphamide and IL-12. J. Immunol., 160, 1369–1377 (1998).
  • 3) Karnbach, C., Daws, M. R., Niemi, E. C., and Nakamura, M. C., Immune rejection of a large sarcoma following cyclophosphamide and IL-12 treatment requires both NK and NK T cells and is associated with the induction of a novel NK T cell population. J. Immunol., 167, 2569–2576 (2001).
  • 4) Chapoval, A. I., Fuller, J. A., Kremlev, S. G., Kamdar, S. J., and Evans, R., Combination chemotherapy and IL-15 administration induce permanent tumor regression in a mouse lung tumor model: NK and T cell-mediated effects antagonized by B cells. J. Immunol., 161, 6977–6984 (1998).
  • 5) Goldfarb, R. H., Ohashi, M., Brunson, K. W., Kirii, Y., Kotera, Y., Basse, P. H., and Kitson, R. P., Augmentation of IL-2 activated natural killer cell adoptive immunotherapy with cyclophosphamide. Anticancer Res., 18, 1441–1446 (1998).
  • 6) Hamuro, J., Kikuchi, T., Takatsuki, F., and Suzuki, M., Cancer cell progression and chemoimmunotherapy-dual effects in the induction of resistance to therapy. Br. J. Cancer, 73, 465–471 (1996).
  • 7) Harada, T., Miura, N., Adachi, Y., Nakajima, M., Yadomae, T., and Ohno, N., Effect of SCG, 1,3-β-D-glucan from Sparassis crispa on the hematopoietic response in cyclophosphamide induced leukopenic mice. Biol. Pharm. Bull., 25, 931–939 (2002).
  • 8) Harada, T., Kawaminami, H., Miura, N. N., Adachi, Y., Nakajima, M., Yadomae, T., and Ohno, N., Mechanism of enhanced hematopoietic response by soluble β-glucan SCG in cyclophosphamide-treated mice. Microbiol. Immunol., 50, 687–700 (2006).
  • 9) Zhang, L., Zhang, M., Zhou, Q., Chen, J., and Zeng, F., Solution properties of antitumor sulfated derivative of α-(1→3)-D-glucan from Ganoderma lucidum. Biosci. Biotechnol. Biochem., 64, 2172–2178 (2000).
  • 10) Wang, Y. Y., Khoo, K. H., Chen, S. T., Lin, C. C., Wong, C. H., and Lin, C. H., Studies on the immuno-modulating and antitumor activities of Ganoderma lucidum (Reishi) polysaccharides: functional and proteomic analyses of a fucose-containing glycoprotein fraction responsible for the activities. Bioorg. Med. Chem., 10, 1057–1062 (2002).
  • 11) Kim, D. H., Shim, S. B., Kim, N. J., and Jang, I. S., β-glucuronidase-inhibitory activity and hepatoprotective effect of Ganoderma lucidum. Biol. Pharm. Bull., 22, 162–164 (1999).
  • 12) Sone, Y., Okuda, R., Wada, N., Kishida, E., and Misaki, A., Structures and antitumor activity of the polysaccharides isolated from fruiting body and growing culture of mycelium of Ganoderma lucidum. Agric. Biol. Chem., 49, 2641–2653 (1985).
  • 13) Tasaka, K., Akagi, M., Miyoshi, K., Mio, M., and Makino, T., Anti-allergic constituents in the culture medium of Ganoderma lucidum. I. Inhibitory effect of oleic acid on histamine release. Agents Actions, 23, 153–156 (1988).
  • 14) Tasaka, K., Mio, M., Izushi, K., Akagi, M., and Makino, T., Anti-allergic constituents in the culture medium of Ganoderma lucidum. II. The inhibitory effect of cyclooctasulfur on histamine release. Agents Actions, 23, 157–160 (1988).
  • 15) Nonaka, Y., Shibata, H., Nakai, M., Kurihara, H., Ishibashi, H., Kiso, Y., Tanaka, T., Yamaguchi, H., and Abe, S., Anti-tumor activities of the antlered form of Ganoderma lucidum in allogeneic and syngeneic tumor-bearing mice. Biosci. Biotechnol. Biochem., 70, 2028–2034 (2006).
  • 16) Kohguchi, M., Kunikata, T., Watanabe, H., Kudo, N., Shibuya, T., Ishihara, T., Iwaki, K., Ikeda, M., Fukuda, S., and Kurimoto, M., Immuno-potentiating effects of the antler-shaped fruiting body of Ganoderma lucidum (Rokkaku-Reishi). Biosci. Biotechnol. Biochem., 68, 881–887 (2004).
  • 17) Masuko, Y., Nakajima, H., Tsubouchi, J., Yamazaki, M., Mizuno, D., and Abe, S., Changes of antitumor immunity of hosts with murine mammary tumors regressed by lentinan: potentiation of antitumor delayed hypersensitivity reaction. Gann, 73, 790–797 (1982).
  • 18) Kodama, N., Komuta, K., Sakai, N., and Nanba, H., Effects of D-fraction, a polysaccharide from Grifola frondosa, on tumor growth involve activation of NK cells. Biol. Pharm. Bull., 25, 1647–1650 (2002).
  • 19) Czop, J. K., and Austen, K. F., Properties of glycans that activate the human alternative complement pathway and interact with the human monocyte beta-glucan receptor. J. Immunol., 135, 3388–3393 (1985).
  • 20) Thornton, B. P., Vetvicka, V., Pitman, M., Goldman, R. C., and Ross, G. D., Analysis of the sugar specificity and molecular location of the β-glucan-binding lectin site of complement receptor type 3 (CD11b/CD18). J. Immunol., 156, 1235–1246 (1996).
  • 21) Taylor, P. R., Brown, G. D., Reid, D. M., Willment, J. A., Martinez-Pomares, L., Gordon, S., and Wong, S. Y., The β-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J. Immunol., 169, 3876–3882 (2002).
  • 22) Brown, G. D., Herre, J., Williams, D. L., Willment, J. A., Marshall, A. S., and Gordon, S., Dectin-1 mediates the biological effects of β-glucans. J. Exp. Med., 197, 1119–1124 (2003).
  • 23) Takeda, K., Kaisho, T., and Akira, S., Toll-like receptors. Annu. Rev. Immunol., 21, 335–376 (2003).
  • 24) D’Agostini, C., Pica, F., Febbraro, G., Grelli, S., Chiavaroli, C., and Garaci, E., Antitumour effect of OM-174 and cyclophosphamide on murine B16 melanoma in different experimental conditions. Int. Immunopharmacol., 5, 1205–1212 (2005).
  • 25) Hong, F., Yan, J., Baran, J. T., Allendorf, D. J., Hansen, R. D., Ostroff, G. R., Xing, P. X., Cheung, N. K., and Ross, G. D., Mechanism by which orally administered β-1,3-glucans enhance the tumoricidal activity of antitumor monoclonal antibodies in murine tumor models. J. Immunol., 173, 797–806 (2004).
  • 26) Hong, F., Hansen, R. D., Yan, J., Allendorf, D. J., Baran, J. T., Ostroff, G. R., and Ross, G. D., β-glucan functions as an adjuvant for monoclonal antibody immunotherapy by recruiting tumoricidal granulocytes as killer cells. Cancer Res., 63, 9023–9031 (2003).
  • 27) Vetvicka, V., Dvorak, B., Vetvickova, J., Richter, J., Krizan, J., Sima, P., and Yvin, J. C., Orally administered marine (1→3)-β-D-glucan phycarine stimulates both humoral and cellular immunity. Int. J. Biol. Macromol., 40, 291–298 (2007).
  • 28) Inomata, T., Goodman, G. B., Fryer, C. J., Chaplin, D. J., Palcic, B., Lam, G. K., Nishioka, A., and Ogawa, Y., Immune reaction induced by X-rays and pions and its stimulation by schizophyllan (SPG). Br. J. Cancer Suppl., 27, 122–125 (1996).
  • 29) Kimura, Y., Taniguchi, M., and Baba, K., Antitumor and antimetastatic effects on liver of triterpenoid fractions of Ganoderma lucidum: mechanism of action and isolation of an active substance. Anticancer Res., 22, 3309–3318 (2002).
  • 30) Wang, G., Zhao, J., Liu, J., Huang, Y., Zhong, J. J., and Tang, W., Enhancement of IL-2 and IFN-γ expression and NK cells activity involved in the anti-tumor effect of ganoderic acid Me in vivo. Int. Immunopharmacol., 7, 864–870 (2007).
  • 31) Min, B. S., Nakamura, N., Miyashiro, H., Bae, K. W., and Hattori, M., Triterpenes from the spores of Ganoderma lucidum and their inhibitory activity against HIV-1 protease. Chem. Pharm. Bull., 46, 1607–1612 (1998).
  • 32) Lin, Z. B., Cellular and molecular mechanisms of immuno-modulation by Ganoderma lucidum. J. Pharmacol. Sci., 99, 144–153 (2005).
  • 33) Thyagarajan, A., Jiang, J., Hopf, A., Adamec, J., and Sliva, D., Inhibition of oxidative stress-induced invasiveness of cancer cells by Ganoderma lucidum is mediated through the suppression of interleukin-8 secretion. Int. J. Mol. Med., 18, 657–664 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.