74
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Intrinsic Bent DNA Sites in the Developmentally Amplified C3-22 Gene Promoter of Rhynchosciara americana (Diptera: Sciaridae)

, , &
Pages 1190-1198 | Received 26 Sep 2007, Accepted 17 Jan 2008, Published online: 22 May 2014

  • 1) Calladine, C. R., Drew, H. R., Luisi, B. F., and Travers, A. A., Twisting and curving. In “Understanding DNA: The Molecule and How It Works,” eds. Calladine, C. R., Drew, H. R., Luisi, B. F., and Travers, A. A., Academic Press, London, pp. 64–93 (2004).
  • 2) Trifonov, E. N., and Sussman, J. L., The pitch of chromatin DNA is reflected in its nucleotide sequence. Proc. Natl. Acad. Sci. USA, 77, 3816–3820 (1980).
  • 3) Anderson, J. N., Detection sequence patterns and function of unusual DNA structures. Nucleic Acids Res., 14, 8513–8533 (1986).
  • 4) Koo, H. S., Wu, H. M., and Crothers, D. M., DNA bending at adenine thymine tracts. Nature, 16, 501–506 (1986).
  • 5) Haran, T. E., and Crothers, D. M., Cooperativity in A-tract structure and bending properties of composite TnAn blocks. Biochemistry, 28, 2763–2767 (1989).
  • 6) Milot, E., Belmaaza, A., Wallenburg, J. C., Gusew, N., Bradley, W. E., and Chartrand, P., Chromosomal illegitimate recombination in mammalian cells is associated with intrinsically bent DNA elements. EMBO J., 11, 5063–5070 (1992).
  • 7) Iarovaia, O., Borounova, V., Vassetzky, Y. S., and Razin, S., An unusual extended DNA loop attachment region is located in the human dystrophin Gene. J. Cell. Physiol., 209, 515–552 (2006).
  • 8) Linial, M., and Shlomai, J., Bent DNA structures associated with several origins of replication are recognized by a unique enzyme from trypanosomatids. Nucleic Acids Res., 16, 6477–6492 (1988).
  • 9) Caddle, M. S., and Dailey, N. H., RIP60, a mammalian origin-binding protein, enhances DNA bending near the dihydrofolate reductase origin of replication. Mol. Cell. Biol., 10, 6236–6243 (1990).
  • 10) Altman, A. L., and Fanning, E., Defined sequence modules and an architectural element cooperate to promote initiation at an ectopic mammalian chromosomal replication origin. Mol. Cell. Biol., 24, 4138–4150 (2004).
  • 11) Fiorini, A., Gouveia, F. S., Soares, M. A. M., Stocker, A. J., Ciferri, R. R., and Fernandez, M. A., DNA bending in the replication zone of the C3 DNA puff amplicon of Rhynchosciara americana (Diptera: Sciaridae). Mol. Biol. Rep., 33, 71–82 (2006).
  • 12) Wada-Kiyama, Y., and Kiyama, R., Periodicity of DNA bend sites in human epsilon-globin gene region. Possibility of sequence-directed nucleosome phasing. J. Biol. Chem., 269, 2238–2244 (1994).
  • 13) Delabre, M. L., Pasero, P., Marilley, M., and Bougis, P. E., Promoter structure and intron-exon organization of a scorpion α-toxin gene. Biochemistry, 34, 6729–6739 (1995).
  • 14) Marilley, M., and Pasero, P., Common DNA structural features exhibited by eukaryotic ribosomal gene promoters. Nucleic Acids Res., 24, 2204–2211 (1996).
  • 15) Perez-Martin, J., and De Lorenzo, V., Clues and consequences of DNA bending in transcription. Annu. Rev. Microbiol., 51, 593–628 (1997).
  • 16) de Souza, O. N., and Ornstein, R. L., Inherent DNA curvature and flexibility correlate with TATA box functionality. Biopolymers, 46, 403–415 (1998).
  • 17) Nair, T. M., Evidence for intrinsic DNA bends within the human cdc2 promoter. FEBS Lett., 422, 94–98 (1998).
  • 18) Bash, R. C. O., Vargason, J. M., Cornejo, S., Ho, S., and Lohr, D., Intrinsically bent DNA in the promoter of the Yeast GALI-10 and GAL80 genes. J. Biol. Chem., 276, 861–866 (2001).
  • 19) Fiorini, A., Basso, L. R., Jr., Paço-Larson, M. L., and Fernandez, M. A., Mapping of intrinsic bent DNA sites in the upstream region of DNA puff BhC4-1 amplified gene. J. Cell. Biochem., 83, 1–13 (2001).
  • 20) Ohyama, T., Curved DNA and transcription in eukaryotes. In “DNA Conformation and Transcription,” ed. Ohyama, T., Springer Science + Business Media, New York, pp. 66–74 (2005).
  • 21) Virstedt, J., Berge, T., Henderson, R. M., Waring, M. J., and Travers, A. A., The influence of DNA stiffness upon nucleosome formation. J. Struct. Biol., 148, 66–85 (2004).
  • 22) Palin, A. H., Critcher, R., Fitzgerald, D. J., Anderson, J. N., and Farr, C. J., Direct cloning and analysis of DNA sequences from a region of the Chinese hamster genome associated with aphidicolin-sensitive fragility. J. Cell Sci., 11, 1623–1624 (1998).
  • 23) Fiorini, A., Gouveia, F. S., and Fernandez, M. A., Scaffold/matrix attachment regions and intrinsic DNA curvature. Biochemistry (Moscow), 71, 481–488 (2006).
  • 24) Balani, V. A., Takeda, K. I., Fiorini, A., and Fernandez, M. A., Bent DNA sites in mammalian replication origins. XXXV Annual Meeting of the Brazilian Society of Biochemistry and Molecular Biology-SBBq, Águas de Lindóia, São Paulo (2006).
  • 25) Gerbi, S., and Urnov, F. D., Differential DNA replication in insects. In “DNA Replication in Eukaryotic Cells,” ed. DePamphilis, M. L., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp. 947–969 (1996).
  • 26) Paçó-Larson, M. L., Coelho, P. S. R., Yokosawa, J., and Lara, F. J. S., Uso de métodos de eletroforese bi-dimensional neutro-alcalina e neutro-neutra para o mapeamento físico de origens de replicação em pufes de DNA. In “Hibridação de Ácidos Nucléicos,” ed. Lara, F. J. S., Holos Editora, São Paulo, pp. 122–133 (2002).
  • 27) Yokosawa, J., Soares, M. A. M., Dijkwel, P. A., Stocker, A. J., and Hamlin, F. J. S. L., DNA replication during amplification of the C3 puff of Rhynchosciara americana initiates at multiple sites in a 6-kb region. Chromosoma, 108, 291–301 (1999).
  • 28) Sambrook, J., and Russell, D. W., Transformation of E. coli. In “Molecular Cloning, a Laboratory Manual,” Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1.119–1.122 (2001).
  • 29) Del Sal, G., Manfioletti, G., and Schneider, C., The Ctab-DNA precipitation method: a common mini-scale preparation of template DNA from phagemids, phages or plasmids suitable for sequencing. Biotechniques, 7, 514–520 (1989).
  • 30) Eckdahl, T. T., and Anderson, J. N., Computer modelling of DNA structures involved in chromosome maintenance. Nucleic Acids Res., 15, 8531–8545 (1987).
  • 31) Stros, M., Two mutations of basic residues within the N-terminus of HMG-1 B domain with different effects on DNA supercoiling and binding to bent DNA. Biochemistry, 40, 4769–4779 (2001).
  • 32) Bolshoy, A., Mcnamara, P., Harrington, R. E., and Trifonov, E. N., Curved DNA without A-A: experimental estimation of all 16 DNA wedge angles. Proc. Natl. Acad. Sci. USA, 88, 2312–2316 (1991).
  • 33) Pasero, P., Sjakste, N., Blettry, C., Got, C., and Marilley, M., Long-range organization and sequence-directed curvature of Xenopus laevis satellite 1 DNA. Nucleic Acids Res., 20, 4703–4710 (1993).
  • 34) Wada-Kiyama, Y., and Kiyama, R., Conservation and periodicity of DNA bend sites in eukaryotic genomes. DNA Res., 29, 25–30 (1996).
  • 35) Miyano, M., Kawashima, T., and Ohyama, T., A common feature shared by bent DNA structures locating in the eukaryotic promoter region. Mol. Biol. Rep., 28, 53–61 (2001).
  • 36) Kim, J., Klooster, S., and Shapiro, D. J., Intrinsically bent DNA in a eukaryotic transcription factor recognition sequence potentiates transcription activation. J. Biol. Chem., 270, 1282–1288 (1995).
  • 37) Kawamoto, T., Makino, K., Orita, S., Nakata, A., and Kakunaga, T., DNA bending and binding factors of the human beta-actin promoter. Nucleic Acids Res., 17, 523–537 (1989).
  • 38) Ohki, R., Hirota, M., Oishi, M., and Kiyama, R., Conservation and continuity of periodic bent DNA in genomic rearrangements between the c-myc and immunoglobulin heavy chain μ loci. Nucleic Acids Res., 26, 3026–3033 (1998).
  • 39) Onishi, Y., Wada-Kiyama, Y., and Kiyama, R., Expression-dependent perturbation of nucleosomal phases at HS2 of the human beta-LCR: possible correlation with periodic bent DNA. J. Mol. Biol., 284, 989–1004 (1998).
  • 40) Wada-Kiyama, Y., Suzuki, K., and Kiyama, R., DNA bend sites in the human beta-globin locus: evidence for a basic and universal structural component of genomic DNA. Mol. Biol. Evol., 16, 922–930 (1999).
  • 41) Ohyama, T., Intrinsic DNA bends: an organizer of local chromatin structure for transcription. Bioessays, 23, 708–715 (2001).
  • 42) Wanapirak, C., Kato, M., Onishi, Y., Wada-Kiyama, Y., and Kiyama, R., Evolutionary conservation and functional synergism of curved DNA at the mouse epsilon- and other globin-gene promoters. J. Mol. Evol., 56, 649–657 (2003).
  • 43) Leech, N., Sorrentino, R., McCulloch, D. K., and Nepom, G. T., Ultrastructural allelic variation in HLA-DQB1 promoter elements. Hum. Immunol., 43, 251–258 (1995).
  • 44) Roux-Rouquie, M., and Marilley, M., Modeling of DNA local parameters predicts encrypted architectural motifs in Xenopus laevis ribosomal gene promoter. Nucleic Acids Res., 28, 3433–3441 (2000).
  • 45) Schroth, G. P., Siino, J. S., Cooney, C. A., Th’ng, J. P., Ho, P. S., and Bradbury, E. M., Intrinsically bent DNA flanks both sides of an RNA polymerase I transcription start site. Both regions display novel electrophoretic mobility. J. Biol. Chem., 267, 9958–9964 (1992).
  • 46) Reis, T. F., Fiorini, A., and Fernandez, M. A., Estudo de sítios de DNA bent na região à jusante do gene amplificado BhC4-1 de Bradysia hygida (Diptera: Sciaridae). In “Fiftieth Brazilian Congress on Genetics” Abstract GA 179, Florianópolis, Santa Catarina (2004).
  • 47) Anglana, M., Apiou, F., Bensimon, A., and Debatisse, M., Dynamics of DNA replication in mammalian somatic cells: nucleotide pool modulates origin choice and interorigin spacing. Cell, 114, 385–394 (2003).
  • 48) Döbbeling, U., Ross, K., Klein-Hitpass, L., Morley, C., Wagner, U., and Ryffel, G. U., A cell-specific activator in the Xenopus A2 vitellogenin gene: promoter elements functioning with rat liver nuclear extracts. EMBO J., 7, 2495–2501 (1988).
  • 49) Schätz, T., and Langowski, J., Curvature and sequence analysis of eukaryotic promoters. J. Biomol. Struct. Dyn., 15, 265–275 (1997).
  • 50) Plaskon, R. R., and Wartell, R. M., Sequence distributions associated with DNA curvature are found upstream of strong E. coli promoters. Nucleic Acids Res., 15, 785–796 (1987).
  • 51) Delic, J., Onclercq, R., and Moisan-Coppey, M., Inhibition and enhancement of eukaryotic gene expression by potential non-B DNA sequences. Biochem. Biophys. Res. Commun., 180, 1273–1283 (1991).
  • 52) McAllister, C. F., and Achberger, E. C., Rotational orientation of upstream curved DNA affects promoter function in Bacillus subtilis. J. Biol. Chem., 264, 10451–10456 (1989).
  • 53) Soares, M. A., Monesi, N., Basso, L. R. Jr., Stocker, A. J., Paco-Larson, M. L., and Lara, F. J., Analysis of the amplification and transcription of the C3-22 gene of Rhynchosciara americana (Diptera: Sciaridae) in transgenic lines of Drosophila melanogaster. Chromosoma, 112, 144–151 (2003).
  • 54) Monesi, N., Jacobs-Lorena, M., and Paco-Larson, M. L., The DNA puff gene BhC4-1 of Bradysia hygida is specifically transcribed in early prepupal salivary glands of Drosophila melanogaster. Chromosoma, 107, 559–569 (1998).
  • 55) Monesi, N., Sousa, J. F., and Paco-Larson, M. L., The DNA puff BhB10-1 gene is differentially expressed in various tissues of Bradysia hygida late larvae and constitutively transcribed in transgenic Drosophila. Braz. J. Med. Biol. Res., 34, 851–859 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.