974
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Studies on Taste: Molecular Biology and Food Science

Pages 1647-1656 | Published online: 22 May 2014

  • 1) Buck, L., and Axel, R., A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell, 65, 175–187 (1991).
  • 2) Abe, K., Kusakabe, Y., Tanemura, K., Emori, Y., and Arai, S., Multiple genes for G protein-coupled receptors and their expression in lingual epithelia. FEBS Lett., 316, 253–256 (1993).
  • 3) Abe, K., Kusakabe, Y., Tanemura, K., Emori, Y., and Arai, S., Primary structure and cell-type specific expression of a gustatory G protein-coupled receptor related to olfactory receptors. J. Biol. Chem., 268, 12033–12039 (1993).
  • 4) Abe, K., Emori, Y., Kondo, H., Suzuki, K., and Arai, S., Molecular cloning of a cysteine proteinase inhibitor of rice (oryzacystatin): homology with animal cystatins and transient expression in the ripening process of rice seeds. J. Biol. Chem., 262, 16793–16797 (1987).
  • 5) Abe, K., Emori, Y., Kondo, H., Arai, S., and Suzuki, K., The NH2-terminal 21 amino acid residues are not essential for the papain-inhibitory activity of oryzacystatin, a member of the cystatin superfamily: expression of oryzacystatin cDNA and its truncated fragments in Escherichia coli. J. Biol. Chem., 263, 7655–7659 (1988).
  • 6) Kondo, H., Abe, K., Nishimura, I., Watanabe, H., Emori, Y., and Arai, S., Two distinct cystatin species in rice seeds with different specificities against cysteine proteinases: molecular cloning, expression, and biochemical studies on oryzacystatin-II. J. Biol. Chem., 265, 15832–15837 (1990).
  • 7) Kondo, H., Abe, K., Emori, Y., and Arai, S., Gene organization of oryzacystatin-II, a new cystatin superfamily member of plant origin, is closely related to that of oryzacystatin-I but different from those of animal cystatins. FEBS Lett., 278, 87–90 (1991).
  • 8) Watanabe, H., Abe, K., Emori, Y., Hosoyama, H., and Arai, S., Molecular cloning and gibberellin-induced expression of multiple cysteine proteinases of rice seeds (oryzains). J. Biol. Chem., 266, 16897–16902 (1991).
  • 9) Abe, M., Abe, K., Kuroda, M., and Arai, S., Corn kernel cysteine proteinase inhibitor as a novel cystatin superfamily member of plant origin: molecular cloning and expression studies. Eur. J. Biochem., 209, 933–937 (1992).
  • 10) Kondo, H., Ijiri, S., Abe, K., Maeda, H., and Arai, S., Inhibitory effect of oryzacystatins and a truncation mutant on the replication of poliovirus in infected Vero cells. FEBS Lett., 299, 48–50 (1992).
  • 11) Misaka, T., Kuroda, M., Iwabuchi, K., Abe, K., and Arai, S., Soyacystatin, a novel cysteine proteinase inhibitor in soybean, is distinct in protein structure and gene organization from other cystatins of animal and plant origin. Eur. J. Biochem., 240, 609–614 (1996).
  • 12) Irie, K., Hosoyama, H., Takeuchi, T., Iwabuchi, K., Watanabe, H., Abe, M., Abe, K., and Arai, S., Transgenic rice established to express corn cystatin exhibits strong inhibitory activity against insect gut proteinases. Plant Mol. Biol., 30, 149–157 (1996).
  • 13) Kudo, N., Nishiyama, M., Sasaki, H., Abe, K., Arai, S., and Tanokura, M., Crystallization and preliminary X-ray diffraction studies of a rice cysteine proteinase inhibitor, oryzacystatin-I. J. Biochem., 123, 568–570 (1998).
  • 14) Nagata, K., Kudo, N., Abe, K., Arai, S., and Tanokura, M., Three-dimensional solution structure of oryzacystatin-I, a cysteine proteinase inhibitor of the rice, Oryza sativa L. japonica. Biochemistry, 39, 14753–14760 (2000).
  • 15) Hoon, M. A., Adler, E., Lindemeier, J., Battey, J. F., Ryba, N. J. P., and Zuker, C. S., Putative mammalian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity. Cell, 96, 541–551 (1999).
  • 16) Adler, E., Hoon, M. A., Mueller, K. L., Chandrashekar, J., Ryba, N. J. P., and Zuker, C. S., A novel family of mammalian taste receptors. Cell, 100, 693–702 (2000).
  • 17) Chandrashekar, J., Mueller, K. L., Hoon, M. A., Adler, E., Feng, L., Guo, W., Zuker, C. S., and Ryba, N. J. P., T2Rs function as bitter taste receptors. Cell, 100, 703–711 (2000).
  • 18) Nelson, G., Hoon, M. A., Chandrashekar, J., Zhang, Y., Ryba, N. J. P., and Zuker, C. S., Mammalian sweet taste receptors. Cell, 106, 381–390 (2001).
  • 19) Zhao, G. Q., Zhang, Y., Hoon, M. A., Chandrashekar, J., Erlenbach, I., Ryba, N. J. P., and Zuker, C. S., The receptor for mammalian sweet and umami taste. Cell, 115, 255–266 (2003).
  • 20) McLaughlin, S. K., Mckinnon, P. J., and Margolskee, R. F., Gustducin is a taste-cell-specific G protein closely related to the transducins. Nature, 357, 563–569 (1992).
  • 21) Wong, G. T., Gannon, K. S., and Margolskee, R. F., Transduction of bitter and sweet taste by gustducin. Nature, 381, 796–800 (1996).
  • 22) He, W., Danilova, V., Zou, S., Hellekant, G., Max, M., Margolskee, R. F., and Damak, S., Partial rescue of taste responses of α-gustducin null mice by transgenic expression of α-transducin. Chem. Senses, 27, 719–727 (2002).
  • 23) Kusakabe, Y., Abe, K., Tanemura, K., Emori, Y., and Arai, S., GUST27 and closely related G protein-coupled receptors are localized in taste buds together with Gi-protein α-subunit. Chem. Senses, 21, 335–340 (1996).
  • 24) Kusakabe, Y., Yasuoka, A., Asano-Miyoshi, M., Iwabuchi, K., Matsumoto, I., Arai, S., Emori, Y., and Abe, K., Comprehensive study on G protein α-subunits in taste bud cells, with special reference to the occurrence of Gαi2 as a major Gα species. Chem. Senses, 25, 525–531 (2000).
  • 25) Asano-Miyoshi, M., Abe, K., and Emori, Y., Co-expression of calcium signaling components in vertebrate taste bud cells. Neurosci. Lett., 283, 61–64 (2000).
  • 26) Asano-Miyoshi, M., Abe, K., and Emori, Y., IP3 receptor type 3 is co-expressed with PLCβ2 in a subset of rat taste bud cells that includes the cells expressing two types of taste receptor, T1R and T2R. Chem. Senses, 26, 259–265 (2001).
  • 27) Zhang, Y., Hoon, M. A., Chandrashekar, J., Mueller, K. L., Cook, B., Wu, D., Zuker, C. S., and Ryba, N. J. P., Coding of sweet, bitter, and umami taste: different receptor cells sharing similar signaling pathways. Cell, 112, 293–301 (2003).
  • 28) Damak, S., Rong, M., Yasumatsu, K., Kokrashvili, Z., Perez, C. A., Shigemura, N., Yoshida, R., Mosinger, B., Glendinning, J. I., Ninomiya, Y., and Margolskee, R. F., Trpm5 null mice respond to bitter, sweet, and umami compounds. Chem. Senses, 31, 253–264 (2006).
  • 29) Oike, H., Matsumoto, I., and Abe, K., Group IIA phospholipase A2 is co-expressed with SNAP-25 in mature taste receptor cells of rat circumvallate papillae. J. Comp. Neurol., 494, 876–886 (2006).
  • 30) Oike, H., Wakamori, M., Mori, Y., Nakanishi, H., Taguchi, R., Misaka, T., Matsumoto, I., and Abe, K., Arachidonic acid can function as a signaling modulator by activating the TRPM5 cation channel in taste receptor cells. Biochim. Biophys. Acta, 1761, 1078–1084 (2006).
  • 31) Ohmoto, M., Matsumoto, I., Misaka, T., and Abe, K., Taste receptor cells express voltage-dependent potassium channels in a cell age-specific manner. Chem. Senses, 31, 739–746 (2006).
  • 32) Huang, A. L., Chen, X., Hoon, M. A., Chandrashekar, J., Guo, W., Trankner, D., Ryba, N. J. P., and Zuker, C. S., The cells and logic for mammalian sour taste detection. Nature, 442, 934–938 (2006).
  • 33) Ishimaru, Y., Inada, H., Kubota, M., Zhuang, H., Tominaga, M., and Matsunami, H., Transient receptor potential family members PKD1L3 and PKD2L1 from a candidate sour taste receptor. Proc. Natl. Acad. Sci. USA, 103, 12569–12574 (2006).
  • 34) Lopez-Jimenez, N. D., Cavenagh, M. M., Sainz, E., Cruz-Ithier, M. A., Battey, J. F., and Sullivan, S. L., Two members of the TRP family of ion channels, Pkd1l3 and Pkd2l1, are co-expressed in a subset of taste receptor cells. J. Neurochem., 98, 68–77 (2006).
  • 35) Ishimaru, Y., Yasuoka, A., Asano-Miyoshi, M., Emori, Y., and Abe, K., An actin binding protein, CAP, is expressed in a subset of rat taste bud cells. Neuroreport, 12, 233–235 (2001).
  • 36) Misaka, T., Kusakabe, Y., Emori, Y., Gonoi, T., Arai, S., and Abe, K., Taste buds have a cyclic nucleotide-activated channel (CNGgust). J. Biol. Chem., 272, 22623–22629 (1997).
  • 37) Kusakabe, Y., Yamaguchi, E., Tanemura, K., Kameyama, K., Chiba, N., Arai, S., Emori, Y., and Abe, K., Identification of two α-subunit species of GTP-binding proteins, Gα15 and Gαq, expressed in rat taste buds. Biochim. Biophys. Acta, 1403, 265–272 (1998).
  • 38) Asano-Miyoshi, M., Kusakabe, Y., Abe, K., and Emori, Y., Identification of taste tissue-specific cDNA clones from a subtraction cDNA library of rat circumvallate and foliate papillae. J. Biochem., 124, 927–933 (1998).
  • 39) Farbman, A. I., Differentiation of taste buds in organ culture. J. Cell Biol., 52, 489–493 (1972).
  • 40) Mbiene, J. P., Maccallum, D. K., and Mistretta, C. M., Organ cultures of embryonic rat tongue support tongue and gustatory papilla morphogenesis in vitro without intact sensory ganglia. J. Comp. Neurol., 377, 324–340 (1997).
  • 41) Barlow, L. A., A taste for development. Neuron, 22, 209–212 (1999).
  • 42) Morris-Wiman, J., Brinkley, L., and Sego, R., An in vitro model for the study of taste papillae morphogenesis using branchial arch explants. Brain Res. Brain Res. Protoc., 5, 172–181 (2002).
  • 43) Kishi, M., Sano, K., Asano-Miyoshi, M., Tsukamoto, Y., Emori, Y., and Abe, K., Identification of β and γ subunits of laminins localized in the basement membrane of rat circumvallate papillae. Biosci. Biotechnol. Biochem., 67, 1154–1156 (2003).
  • 44) Kishi, M., Emori, Y., Tsukamoto, Y., and Abe, K., Changes in cell morphology and cell to cell adhesion induced by extracellular Ca2+ in cultured taste bud cells. Biosci. Biotechnol. Biochem., 66, 484–487 (2002).
  • 45) Kishi, M., Emori, Y., Tsukamoto, Y., and Abe, K., Primary culture of rat taste bud cells that retain molecular markers for taste buds and permit functional expression of foreign genes. Neuroscience, 106, 217–225 (2001).
  • 46) Hyodo-Taniguchi, Y., and Egami, N., Establishment of inbred strains of the medaka Oryzias latipes and the usefulness of the strains for biomedical research. Zool. Sci., 2, 305–316 (1985).
  • 47) Fetcho, J. R., and Liu, K. S., Zebrafish as a model system for studying neuronal circuits and behavior. Ann. NY Acad. Sci., 16, 333–345 (1998).
  • 48) Yasuoka, A., Abe, K., Arai, S., and Emori, Y., Molecular cloning and functional expression of the a1A-adrenoceptor of medaka fish, Oryzias latipes. Eur. J. Biochem., 235, 501–507 (1996).
  • 49) Yasuoka, A., Endo, K., Asano-Miyoshi, M., Abe, K., and Emori, Y., Two subfamilies of olfactory receptor genes in medaka fish, Oyzias latipes: genomic organization and differential expression in olfactory epithelium. J. Biochem., 126, 866–873 (1999).
  • 50) Asano-Miyoshi, M., Suda, T., Yasuoka, A., Ohshima, S., Yamashita, S., Abe, K., and Emori, Y., Random expression of main and vomeronasal olfactory receptor genes in immature and mature olfactory epithelia of Fugu rubripes. J. Biochem., 127, 915–924 (2000).
  • 51) Irie-Kushiyama, S., Asano-Miyoshi, M., Suda, T., Abe, K., and Emori, Y., Identification of 24 genes and 2 pseudo genes coding for olfactory receptors in Japanese loach, classified into 4 subfamilies: a putative evolutionary process for fish olfactory receptor genes by comprehensive phylogenetic analysis. Gene, 325, 123–135 (2004).
  • 52) Yasuoka, A., Emori, Y., and Abe, K., Addition of signal leader sequences to the N-termini of olfactory receptor proteins enhances their expression in Xenopus oocyte. Biosci. Biotechnol. Biochem., 64, 1688–1695 (2000).
  • 53) Yasuoka, A., Abe, K., Saigo, K., Arai, S., and Emori, Y., Molecular cloning of a fish gene encoding a novel seven-transmembrane receptor related distantly to catecholamine, histamine, and serotonin receptors. Biochim. Biophys. Acta, 1235, 467–469 (1995).
  • 54) Yasuoka, A., Hirose, Y., Yoda, H., Aihara, Y., Suwa, H., Niwa, K., Sasado, T., Morinaga, C., Deguchi, T., Henrich, T., Iwanami, N., Kunimatsu, S., Abe, K., Kondoh, H., and Furutani-Seiki, M., Mutations affecting the formation of posterior lateral line system in medaka, Oryzias latipes. Mech. Dev., 121, 729–738 (2004).
  • 55) Ishimaru, Y., Okada, S., Naito, H., Yasuoka, A., Matsumoto, I., and Abe, K., Two families of candidate taste receptors in fishes. Mech. Dev., 122, 1310–1321 (2005).
  • 56) Oike, H., Nagai, T., Furuyama, A., Okada, S., Aihara, Y., Ishimaru, Y., Marui, T., Misaka, T., and Abe, K., Characterization of ligands for fish taste receptors. J. Neurosci., 27, 5584–5592 (2007).
  • 57) Yasuoka, A., Aihara, Y., Matsumoto, I., and Abe, K., Phospholipase C-beta 2 as a mammalian taste signaling marker is expressed in the mutiple gustatory tissues of medaka fish, Oryzias latipes. Mech. Dev., 121, 985–989 (2004).
  • 58) Yoshida, Y., Saito, K., Aihara, Y., Okada, S., Misaka, T., and Abe, K., Transient receptor potential channel M5 and phospholipaseC-β2 colocalizing in zebrafish taste receptor cells. Neuroreport, 18, 1517–1520 (2007).
  • 59) Chapouton, P., and Bahy-Cuif, L., Neurogenesis. Methods Cell Biol., 76, 163–206 (2004).
  • 60) Aihara, Y., Yasuoka, A., Iwamoto, S., Yoshida, Y., Misaka, T., and Abe, K., Construction of a taste-blind medaka fish and quantitative assay of its preference-aversion behavior. Genes Brain Behav., in press.
  • 61) Aihara, Y., Yasuoka, A., Yoshida, Y., Ohmoto, M., Shimizu-Ibuka, A., Misaka, T., Furutani-Seiki, M., Matsumoto, I., and Abe, K., Transgenic labeling of taste receptor cells in model fish under the control of the 5′-upstream region of medaka phospholipase C-beta 2 gene. Gene Expr. Patterns, 7, 149–157 (2007).
  • 62) Slepak, V. Z., Katz, A., and Simon, M. I., Functional analysis of a dominant negative mutant of Gαi2. J. Biol. Chem., 270, 4037–4041 (1995).
  • 63) Matsumoto, I., Emori, Y., Ninomiya, Y., and Abe, K., A comparative study of three cranial sensory ganglia projecting into the oral cavity: in situ hybridization analyses of neurotrophin receptors and thermosensitive cation channels. Mol. Brain Res., 93, 105–112 (2001).
  • 64) Matsumoto, I., Emori, Y., Nakamura, S., Shimizu, K., Arai, S., and Abe, K., DNA microarray cluster analysis reveals tissue similarity and potential neuron-specific genes expressed in cranial sensory ganglia. J. Neurosci. Res., 74, 818–828 (2003).
  • 65) Matsumoto, I., Nagamatsu, N., Arai, S., Emori, Y., and Abe, K., Identification of candidate genes involved in somatosensory functions of cranial sensory ganglia. Mol. Brain Res., 126, 98–102 (2004).
  • 66) Matsumoto, I., Nakamura, S., Emori, Y., Arai, S., and Abe, K., Gene expression profiling of cranial sensory ganglia that transmit food intake stimuli. BioFactors, 21, 15–18 (2004).
  • 67) Yoshihara, Y., Mizuno, T., Nakahira, M., Kawasaki, M., Watanabe, Y., Kagamiyama, H., Jishage, K., Ueda, O., Suzuki, H., Tabuchi, K., Sawamoto, K., Okano, H., Noda, T., and Mori, K., A genetic approach to visualization of multisynaptic neural pathways using plant lectin transgene. Neuron, 22, 33–41 (1999).
  • 68) Horowitz, L. F., Moutmayeur, J. P., Echelard, Y., and Buch, L. B., A genetic approach to trace neural circuits. Proc. Natl. Acad. Sci. USA, 96, 3194–3199 (1999).
  • 69) Ohmoto, M., Matsumoto, I., Yasuoka, A., Yoshihara, Y., and Abe, K., Genetic tracing of the gustatory and trigeminal neural pathways originating from T1R3-expressing taste receptor cells and solitary chemoreceptor cells. Mol. Cell. Neurosci., in press.
  • 70) Frank, M., An analysis of hamster afferent taste nerve response functions. J. Gen. Physiol., 61, 588–618 (1973).
  • 71) Shirasuka, Y., Nakajima, K., Asakura, T., Yamashita, H., Yamamoto, A., Hata, S., Nagata, S., Abo, M., Sorimachi, H., and Abe, K., Neoculin as a new taste-modifying protein occurring in the fruit of Curculigo latifolia. Biosci. Biotechnol. Biochem., 68, 1403–1407 (2004).
  • 72) Nakajima, K., Asakura, T., Maruyama, J., Morita, Y., Oike, H., Shimizu-Ibuka, A., Misaka, T., Sorimachi, H., Arai, A., Kitamoto, K., and Abe, K., Extracellular production of a heterodimetric protein, neoculin, with sweet-tasting and taste-modifying activities by Aspergillus oryzae. Appl. Environ. Microbiol., 72, 3716–3723 (2006).
  • 73) Nakajima, K., Asakura, T., Oike, H., Morita, Y., Shimizu-Ibuka, A., Misaka, T., Sorimachi, H., Arai, S., and Abe, K., Neoculin, a taste-modifying protein, is recognized by human sweet taste receptor. Neuroreport, 17, 1241–1244 (2006).
  • 74) Koizumi, A., Nakajima, K., Asakura, T., Morita, Y., Ito, K., Shimizu-Ibuka, A., Misaka, T., and Abe, K., Taste-modifying sweet protein, neoculin, is received at human T1R3 amino terminal domain. Biochem. Biophys. Res. Commun., 358, 585–589 (2007).
  • 75) Shimizu-Ibuka, A., Morita, Y., Terada, T., Asakura, T., Nakajima, K., Iwata, S., Misaka, T., Sorimachi, H., Arai, S., and Abe, K., Crystal structure of neoculin: insights into its sweetness and taste-modifying activity. J. Mol. Biol., 359, 148–158 (2006).
  • 76) Nakajima, K., Morita, Y., Koizumi, A., Asakura, T., Terada, T., Ito, K., Shimizu-Ibuka, A., Maruyama, J., Kitamoto, K., Misaka, T., and Abe, K., Acid-induced sweetness of neoculin is ascribed to its pH-dependent agonistic-antagonistic interaction with human sweet taste receptor. FASEB J., in press.
  • 77) Wright, C. S., and Hester, G., The 2.0 A structures of a cross-linked complex between snowdrop lectin and a branched mannopentoose; evidence for two unique binding modes. Structure, 4, 1339–1352 (1996).
  • 78) Endo, T., O-mannosyl glycansin mammals. Biochim. Biophys. Acta, 1473, 237–246 (1999).
  • 79) Van Damme, E. J. M., Peumans, W. J., Barre, A., and Roug, P., Plant lectins: a composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Crit. Rev. Plant Sci., 17, 575–692 (1998).
  • 80) Shimizu-Ibuka, A., Nakai, Y., Nakamori, K., Morita, Y., Nakajima, K., Kadota, K., Watanabe, H., Okubo, S., Terada, T., Asakura, T., Misaka, T., and Abe, K., Biochemical and genomic analysis of neoculin compared to monocot mannose-binding lectins. J. Agric. Food Chem., in press.
  • 81) Shimizu-Ibuka, A., Morita, Y., Nakajima, K., Asakura, T., Terada, T., Misaka, T., and Abe, K., Neoculin as a new sweet protein with taste-modifying activity: purification, characterization, and x-ray crystallography. In “Sweetness and Sweeteners: Biology, Chemistry, and Psychophysics,” eds. Weerasinghe, D. K., and Dubois, G. E., American Chemical Society, Inc., Carrboro, pp. 546–559 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.