730
Views
46
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of Food Allergen Structures and Development of Foods for Allergic Patients

Pages 649-659 | Published online: 22 May 2014

  • 1) Holgate, S. T., The epidemic of allergy and asthma. Nature, 402 (6760 Suppl), B2–4 (1999).
  • 2) Eggesbo, M., Botten, G., Halvorsen, R., and Magnus, P., The prevalence of allergy to egg: a population-based study in young children. Allergy, 56, 403–411 (2001).
  • 3) Crittenden, R. G., and Bennett, L. E., Cow’s milk allergy: a complex disorder. J. Am. Coll. Nutr., 24 (6 Suppl), 582S–591S (2005).
  • 4) Scibilia, J., Pastorello, E. A., Zisa, G., Ottolenghi, A., Bindslev-Jensen, C., Pravettoni, V., Scovena, E., Robino, A., and Ortolani, C., Wheat allergy: a double-blind, placebo-controlled study in adults. J. Allergy Clin. Immunol., 117, 433–439 (2006).
  • 5) Sicherer, S. H., and Sampson, H. A., Peanut allergy: emerging concepts and approaches for an apparent epidemic. J. Allergy Clin. Immunol., 120, 491–503 (2007).
  • 6) Larché, M., and Wraith, D. C., Peptide-based therapeutic vaccines for allergic and autoimmune diseases. Nat. Med., 11 (4 Suppl), S69–S76 (2005).
  • 7) Cookson, W., Genetics and genomics of asthma and allergic diseases. Immunol. Rev., 190, 195–206 (2002).
  • 8) Tanabe, S., and Watanabe, J., The production of hypoallergenic wheat flour for wheat-allergic patients. In “Nutraceutical Proteins and Peptides in Health and Disease,” eds. Mine, Y., and Shahidi, F., Karger, Taylor and Francis, Boca Raton, pp. 411–429 (2006).
  • 9) Koning, F., and Vader, W., Gluten peptides and celiac disease. Science, 299, 513–514 (2003).
  • 10) Sturgess, R., Day, P., Ellis, H. J., Gjertsen, H. A., Kontakou, M., and Ciclitira, P. J., Wheat peptide challenge in coeliac disease. Lancet, 343, 758–761 (1994).
  • 11) Troncone, R., Caputo, N., Zibella, A., Molitierno, G., Maiuri, L., and Auricchio, S., Coeliac disease: a common food intolerance on an immunological basis. In “Common Food Intolerances. 1. Epidemiology of Coeliac Disease,” eds. Auricchio, S., and Visakorpi, J. K., Karger, Basel, pp. 1–11 (1992).
  • 12) Amano, M., Ogawa, H., Kojima, K., Kamidaira, T., Suetsugu, S., Yoshihama, M., Satoh, T., Samejima, T., and Matsumoto, I., Identification of the major allergens in wheat flour responsible for baker’s asthma. Biochem. J., 330, 1229–1234 (1998).
  • 13) Walsh, B. J., and Howden, M. E., A method for the detection of IgE binding sequences of allergens based on a modification of epitope mapping. J. Immunol. Methods, 121, 275–280 (1989).
  • 14) Varjonen, E., Savolainen, J., Mattila, L., and Kalimo, K., IgE-binding components of wheat, rye, barley and oats recognized by immunoblotting analysis with sera from adult atopic dermatitis patients. Clin. Exp. Allergy, 24, 481–489 (1994).
  • 15) Varjonen, E., Vainio, E., Kalimo, K., Juntunen-Backman, K., and Savolainen, J., Skin-prick test and RAST responses to cereals in children with atopic dermatitis: characterization of IgE-binding components in wheat and oats by an immunoblotting method. Clin. Exp. Allergy, 25, 1100–1107 (1995).
  • 16) Watanabe, M., Tanabe, S., Suzuki, T., Ikezawa, Z., and Arai, S., Primary structure of an allergenic peptide occurring in the chymotryptic hydrolysate of gluten. Biosci. Biotechnol. Biochem., 59, 1596–1597 (1995).
  • 17) Tanabe, S., Arai, S., Yanagihara, Y., Mita, H., Takahashi, K., and Watanabe, M., A major wheat allergen has a Gln-Gln-Gln-Pro-Pro motif identified as an IgE-binding epitope. Biochem. Biophys. Res. Commun., 219, 290–293 (1996).
  • 18) Kitta, K., Ohnishi-Kameyama, M., Moriyama, T., Ogawa, T., and Kawamoto, S., Detection of low-molecular weight allergens resolved on two-dimensional electrophoresis with acid-urea polyacrylamide gel. Anal. Biochem., 351, 290–297 (2006).
  • 19) Weichel, M., Glaser, A. G., Ballmer-Weber, B. K., Schmid-Grendelmeier, P., and Crameri, R., Wheat and maize thioredoxins: a novel cross-reactive cereal allergen family related to baker’s asthma. J. Allergy Clin. Immunol., 117, 676–681 (2006).
  • 20) Pastorello, E. A., Farioli, L., Conti, A., Pravettoni, V., Bonomi, S., Iametti, S., Fortunato, D., Scibilia, J., Bindslev-Jensen, C., Ballmer-Weber, B., Robino, A. M., and Ortolani, C., Wheat IgE-mediated food allergy in European patients: alpha-amylase inhibitors, lipid transfer proteins and low-molecular-weight glutenins: allergenic molecules recognized by double-blind, placebo-controlled food challenge. Int. Arch. Allergy Immunol., 144, 10–22 (2007).
  • 21) Akagawa, M., Handoyo, T., Ishii, T., Kumazawa, S., Morita, N., and Suyama, K., Proteomic analysis of wheat flour allergens. J. Agric. Food Chem., 55, 6863–6870 (2007).
  • 22) Morita, E., Kunie, K., and Matsuo, H., Food-dependent exercise-induced anaphylaxis. J. Dermatol. Sci., 47, 109–117 (2007).
  • 23) Palosuo, K., Alenius, H., Varjonen, E., Koivuluhta, M., Mikkola, J., Keskinen, H., Kalkkinen, N., and Reunala, T., A novel wheat gliadin as a cause of exercise-induced anaphylaxis. J. Allergy Clin. Immunol., 103, 912–917 (1999).
  • 24) Matsuo, H., Kohno, K., Niihara, H., and Morita, E., Specific IgE determination to epitope peptides of omega-5 gliadin and high molecular weight glutenin subunit is a useful tool for diagnosis of wheat-dependent exercise-induced anaphylaxis. J. Immunol., 175, 8116–8122 (2005).
  • 25) Tanabe, S., and Watanabe, M., Production of hypoallergenic wheat flour. Food Sci. Technol. Res., 5, 317–322 (1999).
  • 26) Rasmussen, S. W., Sequence of a 28.6 kb region of yeast chromosome XI includes the FBA1 and TOA2 genes, an open reading frame (ORF) similar to a translationally controlled tumour protein, one ORF containing motifs also found in plant storage proteins and 13 ORFs with weak or no homology to known proteins. Yeast, 10, S63–68 (1994).
  • 27) Elsayed, S., Sornes, S., Apold, J., Vik, H., and Florvaag, E., The immunological reactivity of the three homologous repetitive tetrapeptides in the region 41–64 of allergen M from cod. Scand. J. Immunol., 16, 77–82 (1982).
  • 28) Fukushi, E., Tanabe, S., Watanabe, M., and Kawabata, J., NMR analysis of a model pentapeptide, acetyl-Gln-Gln-Gln-Pro-Pro, as an epitope of wheat allergen. Magn. Reson. Chem., 36, 741–746 (1998).
  • 29) Maruyama, N., Ichise, K., Katsube, T., Kishimoto, T., Kawase, S., Matsumura, Y., Takeuchi, Y., Sawada, T., and Utsumi, S., Identification of major wheat allergens by means of the Escherichia coli expression system. Eur. J. Biochem., 255, 739–745 (1998).
  • 30) Weiss, W., Huber, G., Engel, K. H., Pethran, A., Dunn, M. J., Gooley, A. A., and Gorg, A., Identification and characterization of wheat grain albumin/globulin allergens. Electrophoresis, 18, 826–833 (1997).
  • 31) Sánchez-Monge, R., Garcia-Casado, G., Lopez-Otin, C., Armentia, A., and Salcedo, G., Wheat flour peroxidase is a prominent allergen associated with baker’s asthma. Clin. Exp. Allergy, 27, 1130–1137 (1997).
  • 32) Baur, X., and Posch, A., Characterized allergens causing bakers’ asthma. Allergy, 53, 562–566 (1998).
  • 33) Osman, A. A., Gunnel, T., Dietl, A., Uhlig, H. H., Amin, M., Fleckenstein, B., Richter, T., and Mothes, T., B cell epitopes of gliadin. Clin. Exp. Immunol., 121, 248–254 (2000).
  • 34) Watanabe, M., Suzuki, T., Ikezawa, Z., and Arai, S., Controlled enzymatic treatment of wheat proteins for production of hypoallergenic flour. Biosci. Biotechnol. Biochem., 58, 388–390 (1994).
  • 35) Watanabe, M., Ikezawa, Z., and Arai, S., Fabrication and quality evaluation of hypoallergenic wheat products. Biosci. Biotechnol. Biochem., 58, 2061–2065 (1994).
  • 36) Tanabe, S., Arai, S., and Watanabe, M., Modification of wheat flour with bromelain and baking hypoallergenic bread with added ingredients. Biosci. Biotechnol. Biochem., 60, 1269–1272 (1996).
  • 37) Watanabe, M., Watanabe, J., Sonoyama, K., and Tanabe, S., Novel method for producing hypoallergenic wheat flour by enzymatic fragmentation of constituent allergens and its application to food processing. Biosci. Biotechnol. Biochem., 64, 2663–2667 (2000).
  • 38) Tanabe, S., Tesaki, S., Watanabe, M., and Yanagihara, Y., Cross-reactivity between bromelain and soluble fraction from wheat flour. Jpn. J. Allergol. (in Japanese), 46, 1170–1173 (1997).
  • 39) Watanabe, J., Tanabe, S., Sonoyama, K., Kuroda, M., and Watanabe, M., IgE-reactive 60 kDa glycoprotein occurring in wheat flour. Biosci. Biotechnol. Biochem., 65, 2102–2105 (2001).
  • 40) Tanabe, S., Watanabe, J., Oyama, K., Fukushi, E., Kawabata, J., Arai, S., Nakajima, T., and Watanabe, M., Isolation and characterization of a novel polysaccharide as a possible allergen occurring in wheat flour. Biosci. Biotechnol. Biochem., 64, 1675–1680 (2000).
  • 41) Yamamoto, A., Tanabe, S., Kojima, T., Sasai, M., Hatano, Y., Watanabe, M., Kobayashi, Y., and Taniuchi, S., Hypoallergenic cupcake is a useful product for wheat-sensitive allergic patients. J. Appl. Res., 4, 518–523 (2004).
  • 42) Taniuchi, S., Tanabe, S., Fujii, Y., Kojima, T., Kurosaka, F., Sasai, M., Nishino, M., Ito, N., and Kaneko, K., Oral desensitization therapy in children with wheat allergy using hypoallergenic wheat. Allergol. Int., submitted.
  • 43) Kaminogawa, S., Hachimura, S., Nakajima-Adachi, H., and Totsuka, M., Food allergens and mucosal immune systems with special reference to recognition of food allergens by gut-associated lymphoid tissue. Allergol. Int., 48, 15–23 (1999).
  • 44) Fiocchi, A., Restani, P., Riva, E., Qualizza, R., Bruni, P., Restelli, A. R., and Galli, C. L., Meat allergy. I. Specific IgE to BSA and OSA in atopic beef sensitive children. J. Am. Coll. Nutr., 14, 239–244 (1995).
  • 45) Fiocchi, A., Restani, P., and Riva, E., Beef allergy in chidren. Nutirition, 16, 454–457 (2000).
  • 46) van Ree, R., van Leeuwen, W. A., Bulder, I., Bond, J., and Aalberse, R. C., Purified natural and recombinant Fed d 1 and cat albumin in in vitro diagnostics for cat allergy. J. Allergy Clin. Immunol., 104, 1223–1230 (1999).
  • 47) Pandjaitan, B., Swoboda, I., Brandejsky-Pichler, F., Rumpold, H., Valenta, R., and Spitzauer, S., Escherichia coli expression and purification of recombinant dog albumin, a cross-reactive animal allergen. J. Allergy Clin. Immunol., 105, 279–285 (2000).
  • 48) Carter, D., Chang, B., Ho, J. X., Keeling, K., and Krishnasami, Z., Preliminary crystallographic studies of four crystal forms of serum albumin. Eur. J. Biochem., 226, 1049–1052 (1994).
  • 49) Gelamo, E. L., and Tabak, M., Spectroscopic studies on the interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants. Spectrochim. Acta A, 56, 2255–2271 (2000).
  • 50) Tanabe, S., Kobayashi, Y., Takahata, Y., Morimatsu, F., Shibata, R., and Nishimura, T., Some human B and T cell epitopes of bovine serum albumin, the major beef allergen. Biochem. Biophys. Res. Commun., 293, 1348–1353 (2002).
  • 51) Tanabe, S., Shibata, R., and Nishimura, T., Hypoallergenic and T cell reactive analogue peptides of bovine serum albumin, the major beef allergen. Mol. Immunol., 41, 885–890 (2004).
  • 52) Tanabe, S., Epitope peptide and immunotherapy. Curr. Protein Pept. Sci., 8, 109–118 (2007).
  • 53) Majamaa, H., and Isolauri, E., Evaluation of the gut mucosal barrier: evidence for increased antigen transfer in children with atopic eczema. J. Allergy Clin. Immunol., 97, 985–990 (1996).
  • 54) Knutson, T. W., Bengtsson, U., Dannaeus, A., Ahlstedt, S., and Knutson, L., Effects of luminal antigen on intestinal albumin and hyaluronan permeability and ion transport in atopic patients. J. Allergy Clin. Immunol., 97, 1225–1232 (1996).
  • 55) Daengprok, W., Garnjanagoonchorn, W., Naivikul, O., Pornsinlpatip, P., Issigonis, K., and Mine, Y., Chicken eggshell matrix proteins enhance calcium transport in the human intestinal epithelial cells, Caco-2. J. Agric. Food Chem., 51, 6056–6061 (2003).
  • 56) Perales, S., Barbera, R., Lagarda, M. J., and Farre, R., Bioavailability of calcium from milk-based formulas and fruit juices containing milk and cereals estimated by in vitro methods (solubility, dialyzability, and uptake and transport by Caco-2 cells). J. Agric. Food Chem., 53, 3721–3726 (2005).
  • 57) Vermeirssen, V., Augustijns, P., Morel, N., Van Camp, J., Opsomer, A., and Verstraete, W., In vitro intestinal transport and antihypertensive activity of ACE inhibitory pea and whey digests. Int. J. Food Sci. Nutr., 56, 415–430 (2005).
  • 58) Konishi, Y., Kobayashi, S., and Shimizu, M., Tea polyphenols inhibit the transport of dietary phenolic acids mediated by the monocarboxylic acid transporter (MCT) in intestinal Caco-2 cell monolayers. J. Agric. Food Chem., 51, 7296–7302 (2003).
  • 59) Ohno, Y., Naganuma, T., Ogawa, T., and Muramoto, K., Effect of lectins on the transport of food factors in Caco-2 cell monolayers. J. Agric. Food Chem., 54, 548–553 (2006).
  • 60) Hidalgo, I. J., Raub, T. J., and Borchardt, R. T., Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology, 96, 736–749 (1989).
  • 61) Tanabe, S., Tesaki, S., Watanabe, J., Fukushi, E., Sonoyama, K., and Kawabata, J., Isolation and structural elucidation of a peptide derived from Edam cheese that inhibits β-lactoglobulin transport. J. Dairy Sci., 86, 464–468 (2003).
  • 62) Kilcawley, K. N., Wilkinson, M. G., and Fox, P. F., Enzyme-modified cheese. Int. Dairy J., 8, 1–10 (1998).
  • 63) Tanabe, S., Isobe, N., Miyauchi, E., Kobayashi, S., Suzuki, M., and Oda, M., Identification of a peptide in enzymatic hydrolysate of cheese that inhibits ovalbumin permeation in Caco-2 cells. J. Agric. Food Chem., 54, 6904–6908 (2006).
  • 64) Tesaki, S., Watanabe, J., Tanabe, S., Sonoyama, K., Fukushi, E., Kawabata, J., and Watanabe, M., An active compound against allergen absorption in hypoallergenic wheat flour produced by enzymatic modification. Biosci. Biotechnol. Biochem., 66, 1930–1935 (2002).
  • 65) Ma, T. Y., Boivin, M. A., Ye, D., Pedram, A., and Said, H. M., Mechanism of TNF-α modulation of Caco-2 intestinal epithelial tight junction barrier: role of myosin light-chain kinase protein expression. Am. J. Physiol. Gastrointest. Liver Physiol., 288, G422–G430 (2005).
  • 66) Bibiloni, R., Fedorak, R. N., Tannock, G. W., Madsen, K. L., Gionchetti, P., Campieri, M., De Simone, C., and Sartor, R. B., VSL#3 probiotic-mixture induces remission in patients with active ulcerative colitis. Am. J. Gastroenterol., 100, 1539–1546 (2005).
  • 67) Miyauchi, E., Morita, H., Okuda, J., Sashihara, T., Shimizu, M., and Tanabe, S., Cell wall fraction of Enterococcus hirae ameliorates TNF-α-induced barrier impairment in the human epithelial tight junction. Lett. Appl. Microbiol., in press, doi: 10.1111/j.1472-765X.2008.02332.x
  • 68) Cario, E., Gerken, G., and Podolsky, D. K., Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology, 132, 1359–1374 (2007).
  • 69) Kawai, M., Hirano, T., Higa, S., Arimitsu, J., Maruta, M., Kuwahara, Y., Ohkawara, T., Hagihara, K., Yamadori, T., Shima, Y., Ogata, A., Kawase, I., and Tanaka, T., Flavonoids and related compounds as anti-allergic substances. Allergol. Int., 56, 113–123 (2007).
  • 70) Kobayashi, S., and Tanabe, S., Evaluation of the anti-allergic activity of Citrus unshiu using rat basophilic leukemia RBL-2H3 cells as well as basophils of patients with seasonal allergic rhinitis to pollen. Int. J. Mol. Med., 17, 511–515 (2006).
  • 71) Tanabe, S., Kinuta, Y., Yasumatsu, H., Takayanagi, M., Kobayashi, S., Takido, N., and Sugiyama, M., Effects of Citrus unshiu powder on the cytokine balance in peripheral blood mononuclear cells of patients with seasonal allergic rhinitis to pollen. Biosci. Biotechnol. Biochem., 71, 2852–2855 (2007).
  • 72) Kobayashi, S., Tanabe, S., Sugiyama, M., and Konishi, Y., Transepithelial transport of hesperetin and hesperidin in intestinal Caco-2 cell monolayers. Biochim. Biophys. Acta, 1778, 33–41 (2008).
  • 73) Ministry of Health, Labor, and Welfare, Food allergies: summary of allergy labeling system, http://www.mhlw.go.jp/english/topics/qa/allergies/al.html
  • 74) Holzhauser, T., Stephan, O., and Vieths, S., Polymerase chain reaction (PCR) methods for the detection of allergenic foods. In “Detecting Allergens in Food,” CRC Press, Boca Raton, pp. 125–143 (2006).
  • 75) Tanabe, S., Miyauchi, E., Muneshige, A., Mio, K., Sato, C., and Sato, M., PCR method of detecting pork in foods for verifying allergen labeling and for identifying hidden pork ingredients in processed foods. Biosci. Biotechnol. Biochem., 71, 1663–1667 (2007).
  • 76) Fujimura, T., Matsumoto, T., Tanabe, S., and Morimatsu, F., Specific discrimination of chicken DNA from other poultry DNA in processed foods using the polymerase chain reaction. Biosci. Biotechnol. Biochem., 72, in press.
  • 77) Tanabe, S., Hase, M., Yano, T., Sato, M., Fujimura, T., and Akiyama, H., A real-time quantitative PCR detection method for pork, chicken, beef, mutton, and horseflesh in foods. Biosci. Biotechnol. Biochem., 71, 3131–3135 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.