202
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Distinct Physiological Roles of Two Membrane-Bound Dehydrogenases Responsible for D-Sorbitol Oxidation in Gluconobacter frateurii

, , &
Pages 842-850 | Received 05 Nov 2007, Accepted 10 Dec 2007, Published online: 22 May 2014

  • 1) Prust, C., Hoffmeister, M., Liesegang, H., Wiezer, A., Fricke, W. F., Ehrenreich, A., Gottschalk, G., and Deppenmeier, U., Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat. Biotechnol., 23, 195–200 (2005).
  • 2) Matsushita, K., Toyama, H., and Adachi, O., Respiratory chains and bioenergetics of acetic acid bacteria. Adv. Microb. Physiol., 36, 247–301 (1994).
  • 3) Matsushita, K., Nagatani, Y., Shinagawa, E., Adachi, O., and Ameyama, M., Effect of extracellular pH on the respiratory chain and energetics of Gluconobacter suboxydans. Agric. Biol. Chem., 53, 2895–2902 (1989).
  • 4) Matsushita, K., Shinagawa, E., Adachi, O., and Ameyama, M., Purification, characterization and reconstitution of cytochrome o-type oxidase from Gluconobacter suboxydans. Biochim. Biophys. Acta/Bioenergetics, 894, 304–312 (1987).
  • 5) Cunningham, L., Pitt, M., and Williams, H. D., The cioAB genes from Pseudomonas aeruginosa code for a novel cyanide-insensitive terminal oxidase related to the cytochrome bd quinol oxidases. Mol. Microbiol., 24, 579–591 (1997).
  • 6) Poole, R. K., and Cook, G. M., Redundancy of aerobic respiratory chains in bacteria? Routes, reasons and regulation. Adv. Microb. Physiol., 43, 165–224 (2000).
  • 7) Adachi, O., Moonmangmee, D., Shinagawa, E., Toyama, H., Yamada, M., and Matsushita, K., New quinoproteins in oxidative fermentation. Biochim. Biophys. Acta, 1647, 10–17 (2003).
  • 8) Sugisawa, T., and Hoshino, T., Purification and properties of membrane-bound D-sorbitol dehydrogenase from Gluconobacter suboxydans IFO 3255. Biosci. Biotechnol. Biochem., 66, 57–64 (2002).
  • 9) Miyazaki, T., Tomiyama, N., Shinjoh, M., and Hoshino, T., Molecular cloning and functional expression of D-sorbitol dehydrogenase from Gluconobacter suboxydans IF03255, which requires pyrroloquinoline quinone and hydrophobic protein SldB for activity development in E. coli. Biosci. Biotechnol. Biochem., 66, 262–270 (2002).
  • 10) Yamada, M., Sumi, K., Matsushita, K., Adachi, O., and Yamada, Y., Topological analysis of quinoprotein glucose dehydrogenase in Escherichia coli and its ubiquinone-binding site. J. Biol. Chem., 268, 12812–12817 (1993).
  • 11) Matsushita, K., Fujii, Y., Ano, Y., Toyama, H., Shinjoh, M., Tomiyama, N., Miyazaki, T., Sugisawa, T., Hoshino, T., and Adachi, O., 5-Keto-D-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in Gluconobacter species. Appl. Environ. Microbiol., 69, 1959–1966 (2003).
  • 12) Shinagawa, E., Matsushita, K., Adachi, O., and Ameyama, M., Purification and characterization of D-sorbitol dehydrogenase from membrane of Gluconobacter suboxydans var. α. Agric. Biol. Chem., 46, 135–141 (1982).
  • 13) Toyama, H., Soemphol, W., Moonmangmee, D., Adachi, O., and Matsushita, K., Molecular properties of membrane-bound FAD-containing D-sorbitol dehydrogenase from thermotolerant Gluconobacter frateurii isolated from Thailand. Biosci. Biotechnol. Biochem., 69, 1120–1129 (2005).
  • 14) Rieske, J. S., Preparation and properties of reduced coenzyme Q-cytochrome c reductase (complex III of the respiratory chain). Methods Enzymol., 10, 239–245 (1967).
  • 15) Kulka, R. G., Colorimetric estimation of ketopentoses and ketohexoses. Biochem. J., 63, 542–548 (1956).
  • 16) Ameyama, M., Shinagawa, E., Matsushita, K., and Adachi, O., D-Fructose dehydrogenase of Gluconobacter industrius: purification, characterization, and application to enzymatic microdetermination of D-fructose. J. Bacteriol., 145, 814–823 (1981).
  • 17) Matsushita, K., Ebisuya, H., Ameyama, M., and Adachi, O., Change of the terminal oxidase from cytochrome a 1 in shaking cultures to cytochrome o in static cultures of Acetobacter aceti. J. Bacteriol., 174, 122–129 (1992).
  • 18) Dulley, J. R., and Grieve, P. A., A simple technique for eliminating interference by detergents in the Lowry method of protein determination. Anal. Biochem., 64, 136–141 (1975).
  • 19) Sambrook, J., Fritsch, E. F., and Maniatis, T., “Molecular Cloning, a Laboratory Manual,” Cold Spring Harbor Laboratory, Cold Spring Harbor (1989).
  • 20) Marmur, J., A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol., 3, 208–218 (1961).
  • 21) Reece, K. S., and Phillips, G. J., New plasmids carrying antibiotic-resistance cassettes. Gene, 165, 141–142 (1995).
  • 22) Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M., and Peterson, K. M., Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene, 166, 175–176 (1995).
  • 23) Cooper, M., Tavankar, G. R., and Williams, H. D., Regulation of expression of the cyanide-insensitive terminal oxidase in Pseudomonas aeruginosa. Microbiology, 149, 1275–1284 (2003).
  • 24) Holscher, T., and Görisch, H., Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H. J. Bacteriol., 188, 7668–7676 (2006).
  • 25) Holscher, T., Weinert-Sepalage, D., and Görisch, H., Identification of membrane-bound quinoprotein inositol dehydrogenase in Gluconobacter oxydans ATCC 621H. Microbiology, 153, 499–506 (2007).
  • 26) Soemphol, W., Toyama, H., Moonmangmee, D., Adachi, O., and Matsushita, K., L-Sorbose reductase and its transcriptional regulator involved in L-sorbose utilization of Gluconobacter frateurii. J. Bacteriol., 189, 4800–4808 (2007).
  • 27) Adachi, O., Fujii, Y., Ghaly, M. F., Toyama, H., Shinagawa, E., and Matsushita, K., Membrane-bound quinoprotein D-arabitol dehydrogenase of Gluconobacter suboxydans IFO 3257: a versatile enzyme for the oxidative fermentation of various ketoses. Biosci. Biotechnol. Biochem., 65, 2755–2762 (2001).
  • 28) Kita, K., Konishi, K., and Anraku, Y., Terminal oxidases of Escherichia coli aerobic respiratory chain. II. Purification and properties of cytochrome b 558-d complex from cells grown with limited oxygen and evidence of branched electron-carrying systems. J. Biol. Chem., 259, 3375–3381 (1984).
  • 29) Jünemann, S., Cytochrome bd terminal oxidase. Biochim. Biophys. Acta, 1321, 107–127 (1997).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.