362
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Characterization of a Dihydrolipoyl Dehydrogenase Having Diaphorase Activity of Clostridium kluyveri

, , &
Pages 982-988 | Received 06 Nov 2007, Accepted 08 Jan 2008, Published online: 22 May 2014

  • 1) Argyrou, A., Sun, G., Palfey, B. A., and Blanchard, J. S., Catalysis of diaphorase reactions by Mycobacterium tuberculosis lipoamide dehydrogenase occurs at the EH4 level. Biochemistry, 42, 2218–2228 (2003).
  • 2) Williams, C. H., Jr., “Chemistry and Biochemistry of Flavoenzymes” Vol. III, ed. Muller, F., CRC Press, Boca Raton, Florida, pp. 121–211 (1992).
  • 3) Carothers, D. J., Pons, G., and Patel, M. S., Dihydrolipoamide dehydrogenase: functional similarities and divergent evolution of the pyridine nucleotide-disulfide oxidoreductases. Arch. Biochem. Biophys., 268, 409–425 (1989).
  • 4) Mattevi, A., de Kok, A., and Perham, R. N., The pyruvate dehydrogenase multienzyme complex. Curr. Opin. Struct. Biol., 2, 877–887 (1992).
  • 5) Perham, R. N., Domains, motifs and linkers in 2-oxo acid dehydrogenase multienzyme complexes: a paradigm in the design of a multifunctional protein. Biochemistry, 30, 8501–8512 (1991).
  • 6) Kikuchi, G., and Hiraga, K., The mitochondrial glycine cleavage system. Mol. Cell. Biochem., 45, 137–149 (1982).
  • 7) Hon, W. M., Chhatwal, V. J. S., Khoo, H. E., and Moochhala, S. M., Histochemical method for detecting nitric oxide synthase activity in cell cultures. Biotech. Histochem., 78, 29–32 (1997).
  • 8) Kaplan, F., Setlow, P., and Kaplan, N. O., Purification and properties of a DPHN-TPNH diaphorase from Clostridium kluyveri. Arch. Biochem. Biophys., 132, 91–98 (1969).
  • 9) Chakraborty, S., Sakka, M., Kimura, T., and Sakka, K., Cloning and expression of a Clostridium kluyveri gene responsible for diaphorase activity. Biosci. Biotechnol. Biochem., in press.
  • 10) Annual RITE report FY2003, The international co-operation program for global environment promotion, research and development of a highly efficient bioprocess for production of valuable chemicals from protein-containing biomass and organic waste. 46–122 (2003).
  • 11) Reed, L. K., Koike, M., Levitch, M. E., and Leach, F. R., Studies on the nature and reactions of protein-bound lipoic acid. J. Biol. Chem., 232, 143–158 (1958).
  • 12) Bradford, M. M., A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248–254 (1976).
  • 13) Layne, E., Spectrophotometric and turbidimetric methods for measuring proteins. Methods Enzymol., 3, 447–454 (1957).
  • 14) Hope, B. T., Michael, G. J., Knigge, K. M., and Vincent, S. R., Neuronal NADPH diaphorase is a nitric oxide synthase. Proc. Natl. Acad. Sci. USA, 88, 2811–2814 (1991).
  • 15) Gonzalez, C. F., Ackerley, D. F., Park, C. H., and Martin, A., Soluble flavoprotein contributes to chromate reduction and tolerance by Pseudomonas putida. Acta Biotechnol., 23, 233–239 (2003).
  • 16) Serrano, A., Purification, characterization and function of dihydrolipoamide dehydrogenase from cyanobacterium Anabaena sp. strain P.C.C.7119. Biochem. J., 288, 823–830 (1992).
  • 17) Dietrichs, D., Meyer, M., Schmidt, B., and Andreesen, J. R., Purification of NADPH-dependent electron transferring flavoproteins and N-terminal protein sequence data of the dihydrolipoamide dehydrogenase from anaerobic, glycine-utilizing bacteria. J. Bacteriol., 172, 2088–2095 (1990).
  • 18) Dietrichs, D., and Andreesen, J. R., Purification and comparative studies of dihydrolipoamide dehydrogenase from anaerobic, glycine-utilizing bacteria Peptostreptococcus glycinophilus, Clostridium cylindrosporum, and Clostridium sporogenes. J. Bacteriol., 172, 243–251 (1990).
  • 19) Nishimoto, E., Aso, Y., Koga, T., and Yamashita, S., Thermal unfolding process of dihydrolipoamide dehydrogenase studies by fluorescence spectroscopy. J. Biochem., 140, 349–357 (2006).
  • 20) Danson, M. J., Eisenthal, R., Hall, S., Kessel, S. R., and Williams, D. L., Dihydrolipoamide dehydrogenase from halophilic archaebacteria. Biochem. J., 218, 811–818 (1984).
  • 21) Fazekas, A. G., and Kokai, K., Extraction, purification, and separation of tissue flavins for spectrophotometric determination. Methods Enzymol., 18B, 385–398 (1971).
  • 22) Oppermann, B. F., Schmidt, B., and Steinbuchel, A., Purification and characterization of acetoin:2,6-dichlorophenolindophenol oxidoreductase, dihydrolipoamide dehydrogenase, and dihydrolipoamide acetyltransferase of the Pelobacter carbinolicus acetoindehydrogenase enzyme system. J. Bacteriol., 173, 757–767 (1991).
  • 23) Fukushima, E., Shinka, Y., Fukui, T., Atomi, H., and Imanaka, T., Methionine sulfoxide reductase from the hyperthermophilic archaeon Thermococcus kodakaraensis, an enzyme designed to function at suboptimal growth temperatures. J. Bacteriol., 189, 7134–7144 (2007).
  • 24) Schmincke-Ott, E., and Bisswanger, H., Dihydrolipoamide dehydrogenase component of the pyruvate dehydrogenase complex from Escherichia coli K12. Eur. J. Biochem., 114, 413–420 (1981).
  • 25) Liu, T., Lioubov, G., Susannah, L. H., and Mulchand, P., Spectroscopic studies of the characterization of recombinant human dihydrolipoamide dehydrogenase and its site-directed mutants. J. Biol. Chem., 270, 15545–15550 (1995).
  • 26) Kenney, W. C., Zakim, D., Hogue, P. K., and Singer, T. P., Multiplicity and origin of isoenzymes of lipoyl dehydrogenase. Eur. J. Biochem., 28, 253–260 (1972).
  • 27) Wilson, J. E., A comparative study of the multiple forms of pig heart lipoyl dehydrogenase. Arch. Biochem. Biophys., 144, 216–223 (1971).
  • 28) Lohrer, H., and Krauth-Siegel, R. L., Purification and characterization of lipoamide dehydrogenase from Trypanosoma cruzi. Eur. J. Biochem., 194, 863–869 (1990).
  • 29) Burns, G., Sykes, P. J., Hatter, K., and Sokatch, J. R., Isolation of a third lipoamide dehydrogenase from Pseudomonas putida. J. Bacteriol., 171, 665–668 (1989).
  • 30) Danson, M. J., Archaebacteria: the comparative enzymology of their central metabolic pathways. Adv. Microb. Physiol., 29, 165–231 (1988).
  • 31) Danson, M. J., McQuattie, A., and Stevenson, K. J., Dihydrolipoamide dehydrogenase from halophilic archaebacteria: purification and properties of the enzyme from Halobacterium halobium. Biochemistry, 25, 3880–3884 (1986).
  • 32) Sundquist, A. R., and Fahey, R. C., The novel disulfide reductases bis-γ-glutamylcystine reductase and dihydrolipoamide dehydrogenase from Halobacterium halobium: purification by immobilized-metal-ion affinity chromatography and properties of the enzymes. J. Bacteriol., 170, 3459–3467 (1988).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.