583
Views
69
CrossRef citations to date
0
Altmetric
Original Articles

Bradyrhizobium iriomotense sp. nov., Isolated from a Tumor-Like Root of the Legume Entada koshunensis from Iriomote Island in Japan

, , , &
Pages 1416-1429 | Received 13 Nov 2007, Accepted 26 Feb 2008, Published online: 22 May 2014

  • 1) Cullimore, J., and Denarie, J., Plant sciences: how legumes select their sweet talking symbionts. Science, 302, 575–578 (2003).
  • 2) Vinuesa, P., Leon-Barrios, M., Silva, C., Willems, A., Jarabo-Lorenzo, A., Perez-Galdona, R., Werner, D., and Martinez-Romero, E., Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies α and Bradyrhizobium genospecies β. Int. J. Syst. Evol. Microbiol., 55, 569–575 (2005).
  • 3) Date, R. A., and Decker, A. M., Minimal antigenic constitution of 28 strains of rhizobium japonicum. Can. J. Microbiol., 11, 1–8 (1965).
  • 4) Trinick, M. J., Bradyrhizobium of the non-legume, Parasponia. In “Microbiology in Action,” eds. Murrell, W. G., and Kennedy, I. R., Research Studies Press, Letchworth, pp. 107–118 (1988).
  • 5) Urtz, B. E., and Elkan, G. H., Genetic diversity among Bradyrhizobium isolates that effectively nodulate peanut (Arachis hypogaea). Can. J. Microbiol., 42, 1121–1130 (1996).
  • 6) Barrera, L. L., Trujillo, M. E., Goodfellow, M., Garcia, F. J., Hernandez-Lucas, I., Davila, G., van Berkum, P., and Martinez-Romero, E., Biodiversity of bradyrhizobia nodulating Lupinus spp. Int. J. Syst. Bacteriol., 47, 1086–1091 (1997).
  • 7) Molouba, F., Lorquin, J., Willems, A., Hoste, B., Giraud, E., Dreyfus, B., Gillis, M., de Lajudie, P., and Masson-Boivin, C., Photosynthetic bradyrhizobia from Aeschynomene spp. are specific to stem-nodulated species and form a separate 16S ribosomal DNA restriction fragment length polymorphism group. Appl. Environ. Microbiol., 65, 3084–3094 (1999).
  • 8) Rivas, R., Willems, A., Palomo, J. L., García-Benavides, P., Mateos, P. F., Martínez-Molina, E., Gillis, M., and Velázquez, E., Bradyrhizobium betae sp. nov., isolated from roots of Beta vulgaris affected by tumour-like deformations. Int. J. Syst. Evol. Microbiol., 54, 1271–1275 (2004).
  • 9) Vinuesa, P., Silva, C., Werner, D., and Martínez-Romero, E., Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol. Phylogenet. Evol., 34, 29–54 (2005).
  • 10) Gu, J., Wang, E. T., and Chen, W. X., Genetic diversity of rhizobia associated with Desmodium species grown in China. Lett. Appl. Microbiol., 44, 286–292 (2007).
  • 11) Jordan, D. C., Transfer of Rhizobium japonicum to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int. J. Syst. Bacteriol., 32, 136–139 (1982).
  • 12) Kuykendall, L. D., Saxena, B., Devine, T. E., and Udell, S. E., Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov. Can. J. Microbiol., 38, 501–505 (1992).
  • 13) Xu, L. M., Ge, C., Cui, Z., Li, J., and Fan, H., Bradyrhizobium liaoningense sp. nov., isolated from the root nodules of soybeans. Int. J. Syst. Bacteriol., 45, 706–711 (1995).
  • 14) Yao, Z. Y., Kan, F. L., Wang, E. T., and Chen, W. X., Characterization of rhizobia that nodulate legume species of the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov. Int. J. Syst. Evol. Microbiol., 52, 2219–2230 (2002).
  • 15) Van Berkum, P. B., Beyhaut, E., Tlusty, B., and Graham, P. H., Rhizobium giardinii is the microsymbiont of Illinois bundleflower (Desmanthus illinoensis (michx) macmillan in midwestern prairies. Can. J. Microbiol., 52, 903–907 (2006).
  • 16) Germano, M. G., Menna, P., Mostasso, F. L., and Hungria, M., RFLP analysis of the rRNA operon of a Brazilian collection of bradyrhizobial strains from 33 legume species. Int. J. Syst. Evol. Microbiol., 56, 217–229 (2006).
  • 17) Wang, F. Q., Wang, E. T., Liu, J., Chen, Q., Sui, X. H., Chen, W. F., and Chen, W. X., Mesorhizobium albiziae sp. nov., a novel bacterium that nodulates Albizia kalkora in a subtropical region of China. Int. J. Syst. Evol. Microbiol., 57, 1192–1199 (2007).
  • 18) Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K., “Current Protocols in Molecular Biology” Vol. 1, Wiley, New York (1995).
  • 19) Hamamoto, M., and Nakase, T., Ballistosporous yeasts found on the surface of plant materials collected in New Zealand. Antonie Van Leeuwenhoek, 67, 151–171 (1995).
  • 20) Normand, P., Orso, S., Cournoyer, B., Jeannin, P., Chapelon, C., Dawson, J., Evtushenko, L., and Misra, A. K., Molecular phylogeny of the genus Frankia and related genera and emendation of family Frankiaceae. Int. J. Syst. Bacteriol., 46, 1–9 (1996).
  • 21) Willems, A., Coopman, R., and Gillis, M., Comparison of sequence analysis of 16S-23S rDNA spacer regions, AFLP analysis and DNA-DNA hybridizations in Bradyrhizobium. Int. J. Syst. Evol. Microbiol., 51, 623–632 (2001).
  • 22) Vinuesa, P., Rademaker, J. L. W., de Bruijn, F. J., and Werner, D., Genotypic characterization of Bradyrhizobium strains nodulating endemic woody legumes of the Canary Islands by PCR-restriction fragment length polymorphism analysis of genes encoding 16S rRNA (16S rDNA) and 16S-23S rDNA intergenic spacers, repetitive extragenic palindromic PCR genomic fingerprinting and partial 16S rDNA sequencing. Appl. Environ. Microbiol., 64, 2096–2104 (1998).
  • 23) Sameshima, R., Isawa, T., Sadowsky, M. J., Hamada, T., Kasai, H., Shutsrirung, A., Mitsui, H., and Minamisawa, K., Phylogeny and distribution of extra-slow-growing Bradyrhizobium japonicum harboring high copy numbers of RSα, RSβ and IS1631. FEMS Microbiol. Ecol., 44, 191–202 (2003).
  • 24) Bürgmann, H., Widmer, F., Sigler, W. V., and Zeyer, J., New molecular screening tools for analysis of free-living diazotrophs in soil. Appl. Environ. Microbiol., 70, 240–247 (2004).
  • 25) Widmer, F., Shaffer, B. T., Porteous, L. A., and Seidler, R. J., Analysis of nifH gene pool complexity in soil and litter at a Douglas fir forest site in the Oregon Cascade Mountain Range. Appl. Environ. Microbiol., 65, 374–380 (1999).
  • 26) Laguerre, G., Nour, S. M., Macheret, V., Sanjuan, J., Drouin, P., and Amarger, N., Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology, 147, 981–993 (2001).
  • 27) Kumar, S., Tamura, K., and Nei, M., MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform., 5, 150–163 (2004).
  • 28) Saitou, N., and Nei, M., The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 44, 406–425 (1987).
  • 29) Saitou, N., and Imanishi, M., Relative efficiencies of the Fitch-Margolis, maximum parsimony, maximum likelihood, minimum evolution and neighbor-joining methods of phylogenetic tree construction in obtaining the correct tree. J. Mol. Biol. Evol., 6, 514–525 (1989).
  • 30) Kimura, M., A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol., 16, 111–120 (1980).
  • 31) Nei, M., “Molecular Evolutionary Genetics,” Columbia University Press, New York (1987).
  • 32) Ezaki, T., Hashimoto, Y., and Yabuuchi, E., Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol., 39, 224–229 (1989).
  • 33) Gao, J. L., Sun, J. G., Li, Y., Wang, E. T., and Chen, W. X., Numerical taxonomy and DNA relatedness of tropical rhizobia isolated from Hainan Province, China. Int. J. Syst. Bacteriol., 44, 151–158 (1994).
  • 34) Smibert, R. M., and Krieg, N. R., Phenotypic characterization. In “Methods for General and Molecular Bacteriology,” eds. Gerhardt, P., Murray, R. G. E., Wood, W. A., and Krieg, N. R., American Society for Microbiology, Washington, pp. 607–654 (1994).
  • 35) Islam, M. S., Kawasaki, H., Nakagawa, Y., Hattori, T., and Seki, T., Labrys okinawensis sp. nov. and Labrys miyagiensis sp. nov., budding bacteria isolated from rhizosphere habitats in Japan, and emended descriptions of the genus Labrys and Labrys monachus. Int. J. Syst. Evol. Microbiol., 57, 552–557 (2007).
  • 36) Tamaoka, J., and Komagata, K., Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol. Lett., 25, 125–128 (1984).
  • 37) Sasser, M., Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101, Newark, DE: MIDI (1997).
  • 38) Tighe, S. W., de Lajudie, P., Dipietro, K., Lindström, K., Nick, G., and Jarvis, B. D. W., Analysis of cellular fatty acids and phenotypic relationship of Agrobacterium, Bradyhrizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using Sherlock Microbial Identification System. Int. J. Syst. Evol. Microbiol., 50, 787–801 (2000).
  • 39) Broughton, W. J., and Dilworth, M. J., Control of leghaemoglobin synthesis in snake beans. Biochem. J., 125, 1075–1080 (1971).
  • 40) Willems, A., Coopman, R., and Gillis, M., Phylogenetic and DNA-DNA hybridization analyses of Bradyrhizobium species. Int. J. Syst. Evol. Microbiol., 51, 111–117 (2001).
  • 41) van Berkum, P., and Eardly, B. D., The aquatic budding bacterium Blastobacter denitrificans is a nitrogen-fixing symbiont of Aeschynomene indica. Appl. Environ. Microbiol., 68, 1132–1136 (2002).
  • 42) Willems, A., Munive, A., de Lajudie, P., and Gillis, M., In most Bradyrhizobium groups sequence comparison of 16S-23S rDNA internal transcribed spacer regions corroborates DNA-DNA hybridizations. Syst. Appl. Microbiol., 26, 203–210 (2003).
  • 43) Sawada, H., Kuykendall, D., and Young, J. M., Changing concepts in the systematics of bacterial nitrogen-fixing legume symbionts. J. Gen. Appl. Microbiol., 49, 155–179 (2003).
  • 44) Vinuesa, P., and Silva, C., Species delineation and biogeography of symbiotic bacteria associated with cultivated and wild legumes. In “Biological Resources and Migration,” ed. Werner, D., Springer-Verlag, Berlin, pp. 143–161 (2004).
  • 45) Stackebrandt, E., Frederiksen, W., Garrity, G. M., Grimont, P. A. D., Kampfer, P., Maiden, M. C. J., Nesme, X., Rossello-Mora, R., Swings, J., Truper, H. G., Vauterin, L., Ward, A. C., and Whitman, W. B., Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int. J. Syst. Evol. Microbiol., 52, 1043–1047 (2002).
  • 46) Sahgal, M., and Johri, B. N., Taxonomy of rhizobia: current status. Curr. Sci., 90, 486–487 (2006).
  • 47) Wernegreen, J. J., and Riley, M. A., Comparison of the evolutionary dynamics of symbiotic and housekeeping loci: a case for the genetic coherence of rhizobial lineages. Mol. Biol. Evol., 16, 98–113 (1999).
  • 48) Turner, S. L., and Young, J. P. W., The glutamine synthetase of rhizobia: phylogenetics and evolutionary implications. Mol. Biol. Evol., 17, 309–319 (2000).
  • 49) Gaunt, M. W., Turner, S. L., Rigottier-Gois, L., Lloyd-Macgilp, S. A., and Young, J. P., Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int. J. Syst. Evol. Microbiol., 51, 2037–2048 (2001).
  • 50) Stepkowski, T., Czaplinska, M., Miedzinska, K., and Moulin, L., The variable part of the dnaK gene as an alternative marker for phylogenetic studies of rhizobia and related alpha Proteobacteria. Syst. Appl. Microbiol., 26, 483–494 (2003).
  • 51) Parker, M. A., rRNA and dnaK relationships of Bradyrhizobium sp. nodule bacteria from four papilionoid legume trees in Costa Rica. Syst. Appl. Microbiol., 27, 334–342 (2004).
  • 52) Nichols, R., Gene trees and species trees are not the same. Trends Ecol. Evol., 16, 358–364 (2001).
  • 53) Rosenberg, N. A., The probability of topological concordance of gene trees and species trees. Theor. Popul. Biol., 61, 225–247 (2002).
  • 54) Stepkowski, T., Moulin, L., Krzyzanska, A., McInnes, A., Law, I. J., and Howieson, J., European origin of Bradyrhizobium populations infecting lupins and serradella in soils of Western Australia and South Africa. Appl. Environ. Microbiol., 71, 7041–7052 (2005).
  • 55) van Berkum, P., and Fuhrmann, J. J., Evolutionary relationships among soybean bradyrhizobia reconstructed from 16S rRNA gene and internally transcribed spacer region sequence divergence. Int. J. Syst. Evol. Microbiol., 50, 2165–2172 (2000).
  • 56) Kwon, S. W., Park, J. Y., Kim, J. S., Kang, J. W., Cho, Y. H., Lim, C. K., Parker, M. A., and Lee, G. B., Phylogenetic analysis of the genera Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium on the basis of 16S rRNA gene and internally transcribed spacer region sequences. Int. J. Syst. Evol. Microbiol., 55, 263–270 (2005).
  • 57) Willems, A., Doignon-Bourcier, F., Goris, J., Coopman, R., de Lajudie, P., de Vos, P., and Gillis, M., DNA-DNA hybridization study of Bradyrhizobium strains. Int. J. Syst. Evol. Microbiol., 51, 1315–1322 (2001).
  • 58) Young, J. P. W., and Haruka, K., Diversity and phylogeny of rhizobia. New Phytol., 133, 87–94 (1996).
  • 59) Giraud, E., Moulin, L., Vallenet, D., Barbe, V., Cytryn, E., Avarre, J.-C., Jaubert, M., Simon, D., Cartieaux, F., Prin, Y., Bena, G., Hannibal, L., Fardoux, J., Kojadinovic, M., Vuillet, L., Lajus, A., Cruveiller, S., Rouy, Z., Mangenot, S., Segurens, B., Dossat, C., Franck, W. L., Chang, W.-S., Saunders, E., Bruce, D., Richardson, P., Normand, P., Dreyfus, B., Pignol, D., Stacey, G., Emerich, D., Verméglio, A., Médigue, C., and Sadowsky, M., Legume symbioses: absence of nod genes in photosynthetic bradyrhizobia. Science, 316, 1307–1312 (2007).
  • 60) Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E., Stackebrandt, E., Starr, M. P., and Trüper, H. G., International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol., 37, 463–464 (1987).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.