419
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Isolation and Characterization of a Novel Thermostable Neopullulanase-Like Enzyme from a Hot Spring in Thailand

, , , &
Pages 1448-1456 | Received 16 Nov 2007, Accepted 21 Mar 2008, Published online: 22 May 2014

  • 1) Van der Maarel, M. J. E. C., Van der Veen, B., Uitdehaag, J. C. M., Leemhuis, H., and Dijkhuizen, L., Properties and applications of starch-converting enzymes of the α-amylase family. J. Biotechnol., 94, 137–155 (2002).
  • 2) Amann, R. I., Ludwig, W., and Schleifer, K. H., Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev., 59, 143–169 (1995).
  • 3) Seow, K. T., Meurer, G., Gerlitz, M., Wendt-Pienkowski, E., Hutchinson, C. R., and Davies, J., A study of iterative type II polyketide synthases, using bacterial genes cloned from soil DNA: a means to access and use genes from uncultured microorganisms. J. Bacteriol., 179, 7360–7368 (1997).
  • 4) Radomski, C., Seow, K., Warren, R., and Yap, W., US Patent 5849491 (Dec. 15, 1998).
  • 5) Lorenz, P., Liebeton, K., Niehaus, F., and Eck, J., Screening for novel enzymes for biocatalytic processes: accessing the metagenome as a resource of novel functional sequence space. Curr. Opin. Biotechnol., 13, 572–577 (2002).
  • 6) Richardson, T. H., Tan, X., Frey, G., Callen, W., Cabell, M., Lam, D., Macomber, J., Short, J. M., Robertson, D. E., and Miller, C., A novel, high performance enzyme for starch liquefaction. J. Biol. Chem., 277, 26501–26507 (2002).
  • 7) Sunna, A., and Bergquist, P. L., A gene encoding a novel extremely thermostable 1,4-β-xylanase isolated directly from an environmental DNA sample. Extremophiles, 7, 63–70 (2003).
  • 8) Daniel, R., The soil metagenome: a rich resource for the discovery of novel natural products. Curr. Opin. Biotechnol., 15, 199–204 (2004).
  • 9) Kanokratana, P., Chanapan, S., Pootanakit, K., and Eurwilaichitr, L., Diversity and abundance of Bacteria and Archaea in the Bor Khlueng hot spring in Thailand. J. Basic Microbiol., 44, 430–444 (2004).
  • 10) Tang, K., Utairungsee, T., Kanokratana, P., Sriprang, R., Champreda, V., Eurwilaichitr, L., and Tanapongpipat, S., Characterization of a novel cyclomaltodextrinase expressed from environmental DNA isolated from Bor Khleung hot spring in Thailand. FEMS Microbiol. Lett., 260, 91–99 (2006).
  • 11) Zhou, J., Bruns, M. A., and Tiedje, J. M., DNA recovery from soils of diverse compositions. Appl. Environ. Microbiol., 62, 316–322 (1996).
  • 12) Miller, G. L., Use of dinitrosalycylic acid for determination of reducing sugar. Anal. Chem., 31, 426–428 (1959).
  • 13) Bendtsen, J. D., Nielsen, H., Heijne, G. V., and Brunak, S., Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol., 340, 783–795 (2004).
  • 14) Park, K. H., Kim, T. J., Cheong, T. K., Kim, J. W., Oh, B. H., and Svensson, B., Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the α-amylase family. Biochim. Biophys. Acta, 1478, 165–185 (2000).
  • 15) Lee, M. H., Kim, Y. W., Kim, T. J., Park, C. S., Kim, J. W., Moon, T. W., and Park, K. H., A novel amylolytic enzyme from Thermotoga maritima, resembling cyclodextrinase and α-glucosidase, that liberates glucose from the reducing end of the substrates. Biochem. Biophys. Res. Commun., 295, 818–825 (2002).
  • 16) Oslancová, A., and Janecek, Š., Oligo-1,6-glucosidase and neopullulanase enzyme subfamilies from the α-amylase family defined by the fifth conserved sequence region. Cell. Mol. Life Sci., 59, 1945–1959 (2002).
  • 17) Hondoh, H., Kuriki, T., and Matsuura, Y., Three-dimensional structure and substrate binding of Bacillus stearothermophilus neopullulanase. J. Mol. Biol., 326, 177–188 (2003).
  • 18) Doman-Pytka, M., Pullulan degrading enzymes of bacterial origin. Crit. Rev. Microbiol., 30, 107–121 (2004).
  • 19) Yokota, T., Tonozuka, T., Shimura, Y., Ichikawa, K., Kamitori, S., and Sakano, Y., Structures of Thermoactinomyces vulgaris R-47 α-amylase II complexed with substrate analogues. Biosci. Biotechnol. Biochem., 65, 401–408 (2001).
  • 20) Turner, P., Labes, A., Fridjonsson, O. H., Hreggvidson, G. O., Schönheit, P., Kristjansson, J. K., Holst, O., and Karlsson, E. N., Two novel cyclodextrin-degrading enzymes isolated from thermophilic bacteria have similar domain structures but differ in oligomeric state and activity profile. J. Biosci. Bioeng., 100, 380–390 (2005).
  • 21) Ohtaki, A., Kondo, S., Shimura, Y., Tonozuka, T., Sakano, Y., and Kamatori, S., Role of Phe286 in the recognition mechanism of cyclomaltooligosaccharides (cyclodextrins) by Thermoactinomyces vulgaris R-47 α-amylase 2 (TVAII): X-ray structures of the mutant TVAIIs, F286A and F286Y, and kinetic analyses of the Phe286-replaced mutant TVAIIs. Carbohydr. Res., 334, 309–313 (2001).
  • 22) Park, S. H., Cha, H., Kang, H. K., Shim, J. H., Woo, E. J., Kim, J. W., and Park, K. H., Mutagenesis of Ala290, which modulates substrate subsite affinity at the catalytic interface of dimeric ThMA. Biochim. Biophys. Acta, 1751, 170–177 (2005).
  • 23) Ibuka, A., Tonozuka, T., Matsuzuwa, H., and Sakai, H., Conversion of neopullulanase-α-amylase from Thermoactinomyces vulgaris R-47 into an amylopullulanase-type enzyme. J. Biochem., 123, 275–282 (1998).
  • 24) Niehaus, F., Peters, A., Groudieva, T., and Antranikian, G., Cloning, expression and biochemical characterization of a unique thermostable pullulan-hydrolyzing enzyme from the hyperthermophilic archeon Thermococcus aggregans. FEMS Microbiol. Lett., 190, 223–229 (2000).
  • 25) Kuriki, T., Kaneko, H., Yanase, M., Takata, H., Shimada, J., Handa, S., Takada, T., Umeyama, H., and Okada, S., Controlling substrate preference and transglycosylation activity of neopullulanase by manipulating steric constraint and hydrophobicity in active center. J. Biol. Chem., 271, 17321–17329 (1996).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.