190
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Identification of New Amine Acceptor Protein Substrate Candidates of Transglutaminase in Rat Liver Extract: Use of 5-(Biotinamido) Pentylamine as a Probe

, , , &
Pages 1056-1062 | Received 06 Dec 2007, Accepted 28 Dec 2007, Published online: 22 May 2014

  • 1) Grenard, P., Bates, M. K., and Aeschlimann, D., Evolution of transglutaminase genes: identification of a transglutaminase gene cluster on human chromosome 15q15. J. Biol. Chem., 276, 33066–33078 (2001).
  • 2) Griffin, M., Casadio, R., and Bergamini, C. M., Transglutaminases: nature’s biological glues. Biochem. J., 368, 377–396 (2002).
  • 3) Lorand, L., and Graham, R. M., Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat. Rev. Mol. Cell Biol., 4, 140–156 (2003).
  • 4) Esposito, C., and Caputo, I., Mammalian transglutaminases: Identification of substrate as a key to physiological function and physiopathological relevance. FEBS J., 272, 615–631 (2005).
  • 5) Fesus, L., and Piacentini, M., Transglutaminase 2: an enigmatic enzyme with diverse functions. Trends Biochem. Sci., 27, 534–539 (2002).
  • 6) Greenberg, C. S., Birckbichler, P. J., and Rice, R. H., Transglutaminases: multifunctional cross-linking enzymes that stabilize tissues. FASEB J., 5, 3071–3077 (1991).
  • 7) Fleckenstein, B., Molberg, O., Qiao, S. W., Schmid, D. G., von der Mulbe, F., Elgstoen, K., Jung, G., and Sollid, L. M., Gliadin T cell epitope selection by transglutaminase in celiac disease: role of enzyme specificity and pH influence on the transamidation versus deamidation process. J. Biol. Chem., 277, 34109–34116 (2002).
  • 8) Molberg, O., McAdam, S. N., Korner, R., Quarsten, H., Kristiansen, C., Madsen, L., Fugger, L., Scott, H., Noren, O., Roepstorff, P., Lundin, K. E., Sjostrom, H., and Sollid, L. M., Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat. Med., 4, 713–717 (1998).
  • 9) Walther, D. J., Peter, J. U., Winter, S., Holtje, M., Paulmann, N., Grohmann, M., Vowinckel, J., Alamo-Bethencourt, V., Wilhelm, C. S., Ahnert-Hilger, G., and Bader, M., Serotonylation of small GTPases is a signal transduction pathway that triggers platelet α-granule release. Cell, 115, 851–862 (2003).
  • 10) Sato, H., Enzymatic procedure for site-specific pegylation of proteins. Adv. Drug Deliv. Rev., 54, 487–504 (2002).
  • 11) Bergamini, C. M., Signorini, M., and Poltronieri, L., Inhibition of erythrocyte transglutaminase by GTP. Biochem. Biophys. Acta, 916, 140–151 (1989).
  • 12) Lee, K. N., Birckbichler, P. J., and Patterson, M. K., Jr., GTP hydrolysis by guinea pig liver transglutaminase. Biochem. Biophys. Res. Commun., 162, 1370–1375 (1989).
  • 13) Nakaoka, H., Perez, D. M., Baek, K. J., Das, T., Husain, A., Misono, K., Im, M. J., and Graham, R. M., Gh: a GTP-binding protein with transglutaminase activity and receptor signaling function. Science, 264, 1593–1596 (1994).
  • 14) Hasegawa, G., Suwa, M., Ichikawa, Y., Ohtsuka, T., Kumagai, S., Kikuchi, M., Sato, Y., and Saito, Y., A novel function of tissue-type transglutaminase: protein disulphide isomerase. Biochem. J., 373, 793–803 (2003).
  • 15) Eschenlauer, S. C., and Page, A. P., The Caenorhabiditis elegans Erp60 homolog protein disulpfide isomerase-3 has disulfide isomerase and transglutaminase-like cross-linking activity and is involved in the maintenance of body morphology. J. Biol. Chem., 278, 4227–4237 (2003).
  • 16) Knodler, L. A., Noiva, R., Metha, K., McCaffery, J. M., Aley, S. B., Svard, S. G., Nystul, T. G., Reiner, D. S., Silberman, J. D., and Gillin, F. D., Novel protein-disulfide isomerases from the early-diverging protist Giardia lamblia. J. Biol. Chem., 274, 29805–29811 (1999).
  • 17) Mishra, S., and Murphy, L. J., Tissue transglutaminase has intrinsic kinase activity: identification of transglutaminase 2 as an insulin-like growth factor-binding protein-3 kinase. J. Biol. Chem., 279, 23863–23868 (2004).
  • 18) Ikura, K., Kita, K., Fujita, I., Hashimoto, H., and Kawabata, N., Identification of amine acceptor protein substrates of transglutaminase in liver extracts: use of 5-(biotinamido) pentylamine as a probe. Arch. Biochem. Biophys., 356, 280–286 (1998).
  • 19) Ichikawa, A., Ohashi, Y., Terada, S., Natsuka, S., and Ikura, K., In vitro modification of betaine-homocysteine S-methyltransferase by tissue-type transglutaminase. Int. J. Biochem. Cell Biol., 36, 1991–2002 (2004).
  • 20) Ikura, K., Sakurai, H., Okumura, K., Sasaki, R., and Chiba, H., One-step purification of guinea pig liver transglutaminase using a monoclonal-antibody immunoadsorbent. Agric. Biol. Chem., 49, 3527–3531 (1985).
  • 21) Folk, J. E., Transglutaminase (guinea pig liver). Methods Enzymol., 17, 889–894 (1970).
  • 22) Henrikson, K. P., Allen, S. H. G., and Maloy, W. L., An avidin monomer affinity column for the purificatin of biotin-containing enzymes. Anal. Biochem., 94, 366–370 (1979).
  • 23) Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685 (1970).
  • 24) Burnette, W. N., Western blotting: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal. Biochem., 112, 195–203 (1981).
  • 25) Landon, M., Cleavage at aspartyl-prolyl bonds. Methods Enzymol., 47, 145–149 (1977).
  • 26) Schimke, R. T., The importance of both synthesis and degradation in the control of arginase levels in rat liver. J. Biol. Chem., 239, 3808–3817 (1964).
  • 27) Sawada, M., Mitsui, Y., Sugiya, H., and Furuyama, S., Ribrose 1,5-bisphosphate is a putative regulator of fructose 6-phosphate/fructose 1,6-bisphosphate cycle in liver. Int. J. Biochem. Cell Biol., 32, 447–454 (2000).
  • 28) Kawamoto, S., Amaya, Y., Murakami, K., Tokunaga, F., Iwanaga, S., Kobayashi, K., Saheki, T., Kimura, S., and Mori, M., Complete nucleotide sequence of cDNA and deduced amino acid sequence of rat liver arginase. J. Biol. Chem., 262, 6280–6283 (1987).
  • 29) Maghrabi, M. R., Pilkis, J., Marker, A. J., Colosia, A. D., D’Angelo, G., Fraser, B. A., and Pilkis, S. J., cDNA sequence of rat liver fructose-1,6-bisphosphatase and evidence for down-regulation of its mRNA by insulin. Proc. Natl. Acad. Sci. USA, 85, 8430–8434 (1988).
  • 30) Folk, J. E., Park, M. H., Chung, S. I., Schrode, J., Lester, E. P., and Cooper, H. L., Polyamines as physiological substrates for transglutaminases. J. Biol. Chem., 255, 3695–3700 (1980).
  • 31) Cordella-Miele, E., Miele, L., Beninati, S., and Mukherjee, A. B., Transglutaminase-catalyzed incorporation of polyamines into phospholipase A2. J. Biochem., 113, 164–173 (1993).
  • 32) Masuda, M., Betancourt, L., Matsuzawa, T., Kashimoto, T., Takao, T., Shimonishi, Y., and Horiguchi, Y., Activation of Rho through a cross-link with polyamines catalyzed by Bordetella dermonecrotizing toxin. EMBO J., 19, 521–530 (2000).
  • 33) Jeon, J. H., Choi, K. H., Cho, S. Y., Kim, C. W., Shin, D. M., Kwon, J. C., Song, K. Y., Park, S. C., and Kim, I. G., Transglutaminase 2 inhibits Rb binding of human papillomavirus E7 by incorporating polyamine. EMBO J., 22, 5273–5282 (2003).
  • 34) Overbye, A., Fengsrud, M., and Seglen, P. O., Proteomic analysis of membrane-associated proteins from rat liver autophagosomes. Autophagy, 3, 300–322 (2007).
  • 35) Ueno, T., Ishidoh, K., Mineki, R., Tanida, I., Murayama, K., Kadowaki, M., and Kominami, E., Autolysosomal membrane-associated betaine homocystein methyltransferase: limited degradation fragment of a sequestered cytosolic enzyme monitoring autophagy. J. Biol. Chem., 274, 15222–15229 (1999).
  • 36) Furuya, N., Kanazawa, T., Fujimura, S., Ueno, T., Kominami, E., and Kadowaki, M., Leupeptin-induced appearance of partial fragment of betaine homocysteine methyltransferase during autophagic maturation in rat hepatocytes. J. Biochem., 129, 313–320 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.