590
Views
35
CrossRef citations to date
0
Altmetric
Original Articles

Characterization of the Cholesterol-Reducing Activity in a Cell-Free Supernatant of Lactobacillus acidophilus ATCC 43121

, , , &
Pages 1483-1490 | Received 07 Dec 2007, Accepted 23 Jan 2008, Published online: 22 May 2014

  • 1) Manson, J. E., Tosteson, H., Ridker, P. M., Sattereld, S., Herbert, P., and O’Conner, G. T., The primary prevention of myocardial infarction. N. Engl. J. Med., 326, 1406–1416 (1992).
  • 2) Choi, S. S., Kim, Y., Han, K. S., You, S., Oh, S., and Kim, S. H., Effects of Lactobacillus strains on cancer cell proliferation and oxidative stress in vitro. Lett. Appl. Microbiol., 42, 452–458 (2006).
  • 3) Fuller, R., Probiotics in man and animal. J. Appl. Bacteriol., 66, 365–378 (1989).
  • 4) Mann, G. V., and Spoerry, A., Studies of a surfactant and cholesteremia in the Maasai. Am. J. Clin. Nutr., 27, 464 (1974).
  • 5) Anderson, J. W., and Gilliland, S. E., Effect of fermented milk (yogurt) containing Lactobacillus acidophilus L1 on serum cholesterol in hypercholesterolemic humans. J. Am. Coll. Nutr., 18, 43–50 (1999).
  • 6) Xiao, J. Z., Kondo, S., Takahashi, N., Miyaji, K., Oshida, K., Hiramatsu, A., Iwatsuki, K., Kokubo, S., and Hosono, A., Effects of milk products fermented by Bifidobacterium longum on blood lipids in rats and healthy adult male volunteers. J. Dairy Sci., 86, 2452–2461 (2003).
  • 7) Corzo, G., and Gilliland, S. E., Bile salt hydrolase activity of three strains of Lactobacillus acidophilus. J. Dairy Sci., 82, 466–471 (1999).
  • 8) Liong, M. T., and Shah, N. P., Bile salt deconjugation ability, bile salt hydrolase activity and cholesterol co-precipitation ability of lactobacilli strains. Int. Dairy J., 15, 391–398 (2005).
  • 9) Gilliland, S. E., Nelson, C. R., and Maxwell, C., Assimilation of cholesterol by Lactobacillus acidophilus. Appl. Environ. Microbiol., 49, 377–381 (1985).
  • 10) Noh, D. O., Kim, S. H., and Gilliland, S. E., Incorporation of cholesterol into the cellular membrane of Lactobacillus acidophilus ATCC 43121. J. Dairy Sci., 80, 3107–3113 (1997).
  • 11) Buck, M. L., and Gilliland, S. E., Comparison of freshly isolated strains of Lactobacillus acidophilus of human intestinal origin for ability to assimilate cholesterol during growth. J. Dairy Sci., 77, 2925–2933 (1994).
  • 12) Kimoto, H., Ohmomo, S., and Okamoto, T., Cholesterol removal from media by lactococci. J. Dairy Sci., 85, 3182–3188 (2002).
  • 13) Usman, and Hosono, A., Bile tolerance, taurocholate deconjugation, and binding of cholesterol by Lactobacillus gasseri strains. J. Dairy Sci., 82, 243–248 (1999).
  • 14) Gouesbet, G., Jan, G., and Boyaval, P., Two-dimensional electrophoresis study of Lactobacillus delbrueckii subsp. bulgaricus thermotolerance. Appl. Environ. Microbiol., 68, 1055–1063 (2002).
  • 15) Hormann, S., Scheyhing, C., Behr, J., Pavlovic, M., Ehrmann, M., and Vogel, R. F., Comparative proteome approach to characterize the high-pressure stress response of Lactobacillus sanfranciscensis DSM 20451(T). Proteomics, 6, 1878–1885 (2006).
  • 16) Sanchez, B., Champomier-Verges, M. C., Anglade, P., Baraige, F., de Los Reyes-Gavilan, C. G., Margolles, A., and Zagorec, M., Proteomic analysis of global changes in protein expression during bile salt exposure of Bifidobacterium longum NCIMB 8809. J. Bacteriol., 187, 5799–5808 (2005).
  • 17) Oh, S., Kim, S. H., and Worobo, R. W., Characterization and purification of a bacteriocin produced by a potential probiotic culture, Lactobacillus acidophilus 30SC. J. Dairy Sci., 83, 2747–2752 (2000).
  • 18) Razin, S., Kutner, S., Efrati, H., and Rottem, S., Phospholipid and cholesterol uptake by mycoplasma cells and membranes. Biochim. Biophys. Acta, 598, 628–640 (1980).
  • 19) Rudel, L. L., and Morris, M. D., Determination of cholesterol using o-phthalaldehyde. J. Lipid Res., 14, 364–366 (1973).
  • 20) Walker, D. R., and Gilliland, S. E., Relationship among bile tolerance, bile salt deconjugation, and assimilation of cholesterol by Lactobacillus acidophilus. J. Dairy Sci., 76, 956–961 (1993).
  • 21) Tsaknis, J., and Lalas, S., Extraction and identification of natural antioxidant from Sideritis euboea (mountain tea). J. Agric. Food Chem., 53, 6375–6381 (2005).
  • 22) Kim, Y., Oh, S. N., Ahn, E. Y., Imm, J. Y., Oh, S., Park, S., and Kim, S. H., Proteome analysis of virulence factor regulated by autoinducer-2–like activity in Escherichia coli O157:H7. J. Food Prot., 70, 300–307 (2007).
  • 23) Ramagli, L. S., Quantifying protein in 2-D PAGE solubilization buffers. Methods Mol. Biol., 112, 99–103 (1999).
  • 24) Oh, S., Imm, H., Oh, E., Lee, J., Kim, J. Y., Mun, J., Kim, Y., Lee, E., Kim, J., and Sul, D., Effects of benzo(a)pyrene on protein expression in Jurkat T-cells. Proteomics, 4, 3514–3526 (2004).
  • 25) Balmir, F., Staack, R., Jeffrey, E., Jimenez, M. D., Wang, L., and Potter, S. M., An extract of soy flour influences serum cholesterol and thyroid hormones in rats and hamsters. J. Nutr., 126, 3046–3053 (1996).
  • 26) Sugano, M., and Koba, K., Dietary protein and lipid metabolism: a multifunctional effect. Ann. NY Acad. Sci., 676, 215–222 (1993).
  • 27) Klaver, F. A. M., and Van der Meer, R., The assumed estimation of cholesterol removal by Lactobacilli and Bifidobacterium bifidum is due to their bile salt deconjugation activity. Appl. Environ. Microbiol., 59, 1120–1124 (1993).
  • 28) Gottesman, S., Wickner, S., and Maurizi, M. Z., Protein quality control: triage by chaperones and proteases. Genes Dev., 11, 815–823 (1997).
  • 29) Gupta, R. S., Evolution of the chaperonin families (Hsp60, Hsp10 and Tcp-1) of proteins and the origin of eukaryotic cells. Mol. Microbiol., 15, 1–11 (1995).
  • 30) Bergonzelli, G. E., Granato, D., Pridmore, R. D., Marvin-Guy, L. F., Donnicola, D., and Corthesy-Theulaz, I. E., GroEL of Lactobacillus johnsonii La1 (NCC 533) is cell surface associated: potential role in interactions with the host and the gastric pathogen Helicobacter pylori. Infect. Immun., 74, 425–434 (2006).
  • 31) Torok, Z., Horvath, I., Goloubinoff, P., Kovacs, E., Glatz, A., Balogh, G., and Vigh, L., Evidence for a lipochaperonin: association of active protein-folding GroESL oligomers with lipids can stabilize membranes under heat shock conditions. Proc. Natl. Acad. Sci. USA, 94, 2192–2197 (1997).
  • 32) Henkin, T. M., Glass, B. L., and Grundy, F. J., Analysis of the Bacillus subtilis tyrS gene: conservation of a regulatory sequence in multiple tRNA synthetase genes. J. Bacteriol., 174, 1299–1306 (1992).
  • 33) Larsen, N., Boye, M., Siegumfeldt, H., and Jakobsen, M., Differential expression of proteins and genes in the lag phase of Lactococcus lactis subsp. lactis grown in synthetic medium and reconstituted skim milk. Appl. Environ. Microbiol., 72, 1173–1179 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.