431
Views
41
CrossRef citations to date
0
Altmetric
Original Articles

Cloning and Characterization of a Gene Encoding HMG-CoA Reductase from Ganoderma lucidum and Its Functional Identification in Yeast

, , , , , & show all
Pages 1333-1339 | Received 08 Jan 2008, Accepted 27 Jan 2008, Published online: 22 May 2014

  • 1) Cheng, R. Y., and Yu, D. Q., Research progress on the chemical component of Ganoderma lucidum triterpenoid. Acta Pharmaceutica Sinica (in Chinese), 25, 940–953 (1990).
  • 2) Lin, C. N., Tome, W. P., and Won, S. J., Novel cytotoxic principles of Formosan Ganoderma lucidum. J. Nat. Prod., 54, 998–1002 (1991).
  • 3) Kohda, H., Tokumoto, W., Sakamoto, K., Fujii, M., Hirai, Y., Yamasaki, K., Komoda, Y., Nakamura, H., Ishihara, S., and Uchida, M., The biologically active constituents of Ganoderma lucidum (Fr.) Karst: histamine release-inhibitory triterpenes. Chem. Pharm. Bull., 33, 1367–1374 (1985).
  • 4) Morigiwa, A., Kitabatake, K., Fujimoto, Y., and Ikekawa, N., Angiotensin converting enzyme-inhibitory triterpenes from Ganoderma lucidum. Chem. Pharm. Bull., 34, 3025–3028 (1986).
  • 5) Komoda, Y., Shimizu, M., Sonoda, Y., and Sato, Y., Ganoderic acid and its derivatives as cholesterol synthesis inhibitors. Chem. Pharm. Bull., 37, 531–533 (1989).
  • 6) Sonoda, Y., Sekigawa, Y., and Sato, Y., In vitro effects of oxygenated lanosterol derivatives on cholesterol biosynthesis from 24, 25-dihydrolanosterol. Chem. Pharm. Bull., 36, 966–973 (1988).
  • 7) Jolidon, S., Polak, A. M., Guerry, P., and Hartman, P. G., Inhibitors of 2,3-oxidosqualene lanosterol-cyclase as potential antifungal agents. Biochem. Soc. Trans., 18, 47–48 (1990).
  • 8) Zhang, D., Jennings, S. M., Robinson, G. W., and Poulter, C. D., Yeast squalene synthase: expression, purification, and characterization of soluble recombinant enzyme. Arch. Biochem. Biophys., 304, 133–143 (1993).
  • 9) Caelles, C., Ferrer, A., Balcells, L., Hegardt, F. G., and Boronat, A., Isolation and structural characterization of a cDNA encoding Arabidopsis thaliana 3-hydroxy-3-methylglutaryl coenzyme A reductase. Plant Mol. Biol., 13, 627–638 (1989).
  • 10) Chappell, J., Wolf, F., Proulx, J., Cuellar, R., and Saunders, C., Is the reaction catalyzed by 3-hydroxy-3-methylglutaryl coenzyme A reductase a rate-limiting step for isoprenoid biosynthesis in plants? Plant Physiol., 109, 1337–1343 (1995).
  • 11) Anderson, R. G., Orci, L., Brown, M. S., Garcia-Segura, L. M., and Goldstein, J. L., Ultrastructural analysis of crystalloid endoplasmic reticulum in UT-1 cells and its disappearance in response to cholesterol. J. Cell Sci., 63, 1–20 (1983).
  • 12) Basson, M. E., Thorsness, M., Finer-Moore, J., Stroud, R. M., and Rine, J., Structural and functional conservation between yeast and human 3-hydroxy-3-methylglutaryl coenzyme A reductases, the rate-limiting enzyme of sterol biosynthesis. Mol. Cell. Biol., 8, 3797–3808 (1988).
  • 13) Liscum, L., Finer-Moore, J., Stroud, R. M., Luskey, K. L., Brown, M. S., and Goldstein, J. L., Domain structure of 3-hydroxy-3-methylglutaryl coenzyme A reductase, a glycoprotein of the endoplasmic reticulum. J. Biol. Chem., 260, 522–530 (1985).
  • 14) Skalnik, D. G., Narita, H., Kent, C., and Simoni, R. D., The membrane domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase confers endoplasmic reticulum localization and sterol-regulated degradation onto beta-galactosidase. J. Biol. Chem., 263, 6836–6841 (1988).
  • 15) Croxen, R., Goosey, M. W., Keon, J. P., and Hargreaves, J. A., Isolation of an Ustilago maydis gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase and expression of a C-terminal-truncated form in Escherichia coli. Microbiol., 140, 2363–2370 (1994).
  • 16) Olender, E. H., and Simon, R. D., The intracellular targeting and membrane topology of 3-hydroxy-3-methylglutaryl-CoA reductase. J. Biol. Chem., 267, 4223–4235 (1992).
  • 17) Roitelman, J., Olender, E. H., Bar-Nun, S., Dunn, W. A., Jr., and Simoni, R. D., Immunological evidence for eight spans in the membrane domain of 3-hydroxy-3-methylglutaryl coenzyme A reductases: implications for enzyme degradation in the endoplasmic reticulum. J. Cell Biol., 117, 959–973 (1992).
  • 18) Genschik, P., Criqui, M. C., Parmentier, Y., Marbach, J., Durr, A., Fleck, J., and Jamet, E., Isolation and characterization of a cDNA encoding a 3-hydroxy-3-methylglutaryl coenzyme A reductase from Nicotiana sylvestris. Plant Mol. Biol., 20, 337–341 (1992).
  • 19) Learned, R. M., and Fink, G. R., 3-hydroxy-3-methylglutaryl coenzyme A reductase from Arabidopsis thaliana is structurally distinct from the yeast and animal enzymes. Proc. Natl. Acad. Sci. USA, 86, 2779–2783 (1989).
  • 20) Nelson, A. J., Doerner, P. W., Zhu, Q., and Lamb, C. J., Isolation of a monocot 3-hydroxy-3–methylglutaryl coenzyme A reductase gene that is elicitor-inducible. Plant Mol. Biol., 25, 401–412 (1994).
  • 21) Jingami, H., Brown, M. S., Goldstein, J. L., Anderson, R. G., and Luskey, K. L., Partial deletion of membrane-bound domain of 3-hydroxy-3–methylglutaryl coenzyme A reductase eliminates sterol-enhanced degradation and prevents formation of crystalloid endoplasmic reticulum. J. Cell Biol., 104, 1693–1704 (1987).
  • 22) Gertler, F. B., Chiu, C. Y., Richter-Mann, L., and Chin, D. J., Developmental and metabolic regulation of the Drosophila melanogaster 3-hydroxy-3–methylglutaryl coenzyme A reductase. Mol. Cell. Biol., 8, 2713–2721 (1988).
  • 23) Saghai-Maroof, M. A., Soliman, K. M., Jorgensen, R. A., and Allard, R. W., Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location and population dynamics. Proc. Natl. Acad. Sci. USA, 81, 8014–8018 (1984).
  • 24) Sambrook, J., Fritsch, E. F., and Maniatis, T., “Molecular Cloning, a Laboratory Manual” 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor (1989).
  • 25) Wang, S., He, J., Cui, Z., and Li, S., Self-formed adaptor PCR: a simple and efficient method for chromosome walking. Appl. Environ. Microbiol., 73, 5048–5051 (2007).
  • 26) Chehab, E. W., Raman, G., Walley, J. W., Perea, J. V., Banu, G., Theg, S., and Dehesh, K., Rice hydroperoxide lyases with unique expression patterns generate distinct aldehyde signatures in Arabidopsis. Plant Physiol., 141, 121–134 (2006).
  • 27) Zhao, M. W., Liang, W. Q., Zhang, D. B., Wang, N., Wang, C. G., and Pan, Y. J., Cloning and characterization of squalene synthase (SQS) gene from Ganoderma lucidum. J. Microbiol. Biotechnol., 17, 1106–1112 (2007).
  • 28) Xu, F., Zhao, M. W., and Li, Y. X., Cloning and sequence analysis of a glyceraldehyde-3-phosphate dehydrogenase gene from Ganoderma lucidum. J. Microbiol., 44, 515–522 (2006).
  • 29) Ruiz-Albert, J., Cerdá-Olmedo, E., and Corrochano, L. M., Genes for mevalonate biosynthesis in Phycomyces. Mol. Genet. Genomics, 266, 768–777 (2002).
  • 30) Ferrer, A., Aparicio, C., Nogués, N., Wettstein, A., Bach, T. J., and Boronat, A., Expression of catalytically active radish 3-hydroxy-3-methylglutaryl coenzyme A reductase in Escherichia coli. FEBS Lett., 266, 67–71 (1990).
  • 31) Hirotani, M., Asaka, I., and Furuya, T., Investigation of the biosynthesis of 3-hydroxy triterpenoids, ganoderic acids T and S by application of a feeding experiment using [1,2-13C2]acetate. J. Chem. Soc., Perkin Trans. 1, 2751–2754 (1990).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.