289
Views
33
CrossRef citations to date
0
Altmetric
Original Articles

The Role of Cysteine 116 in the Active Site of the Antitumor Enzyme L-Methionine γ-Lyase from Pseudomonas putida

, , , , &
Pages 1722-1730 | Received 09 Jan 2008, Accepted 31 Mar 2008, Published online: 22 May 2014

  • 1) Tanaka, H., Esaki, N., and Soda, K., Properties of L-methionine γ-lyase from Pseudomonas ovalis. Biochemistry, 16, 100–106 (1977).
  • 2) Nakayama, T., Esaki, N., Lee, W. J., Tanaka, I., Tanaka, H., and Soda, K., Purification and properties of L-methionine γ-lyase from Aeromonas sp. Agric. Biol. Chem., 48, 2367–2369 (1984).
  • 3) Manukhov, I. V., Mamaeva, D. V., Rastorguev, S. M., Faleev, N. G., Morozova, E. A., Demidkina, T. V., and Zavilgelsky, G. B., A gene encoding L-methionine γ-lyase is present in Enterobacteriaceae family genomes: identifications and characterization of Citrobacter freundii L-methionine γ-lyase. J. Bacteriol., 187, 3889–3893 (2005).
  • 4) Amarita, F., Yvon, M., Nardi, M., Chambellon, E., Delettre, J., and Bonnarme, P., Identification and functional analysis of the gene encoding methionine γ-lyase in Brevibacterium linens. Appl. Environ. Microbiol., 70, 7348–7354 (2004).
  • 5) Yoshimura, M., Nakano, Y., Yamashita, Y., Oho, T., Saito, T., and Koga, T., Formation of methyl mercaptan from L-methionine by Porphyromonas gingivalis. Infect. Immun., 68, 6912–6916 (2000).
  • 6) Fukamachi, H., Nakano, Y., Okano, S., Shibata, Y., Abiko, Y., and Yamashita, Y., High production of methyl mercaptan by L-methionine-alpha-deamino-gamma-mercaptomethane lyase from Treponema denticola. Biochem. Biophys. Res. Commun., 331, 127–131 (2005).
  • 7) Lockwood, B. C., and Coombs, G. H., Purification and characterization of methionine γ-lyase from Trichomonas vaginalis. Biochem. J., 279, 675–682 (1991).
  • 8) Tokoro, M., Asai, T., Kobayashi, S., Takeuchi, T., and Nozaki, T., Identification and characterization of two isoenzymes of methionine γ-lyase from Entamoeba histolytica: a key enzyme of sulfur-amino acid degradation in an anaerobic parasitic protist that lacks forward and reverse trans-sulfuration pathways. J. Biol. Chem., 278, 42717–42727 (2003).
  • 9) Rébeillé, F., Jabrin, S., Bligny, R., Loizeau, K., Gambonnet, B., Van, Wilder, V., Douce, R., and Ravanel, S., Methionine catabolism in Arabidopsis cells is initiated by a γ-cleavage process and leads to S-methylcysteine and isoleucine syntheses. Proc. Natl. Acad. Sci. USA, 103, 15687–15692 (2006).
  • 10) Hoffman, R. M., and Erbe, R. W., High in vivo rate methionine biosynthesis in transformed human and malignant rat cells auxotropic for methionine. Proc. Natl. Acad. Sci. USA, 73, 1523–1527 (1976).
  • 11) Mecham, J. O., Rowitch, D., Wallace, C. D., Stern, P. H., and Hoffman, R. M., The metabolic defect of methionine dependence occurs frequently in human tumor cell lines. Biochem. Biophys. Res. Commun., 117, 429–434 (1983).
  • 12) Inoue, H., Inagaki, K., Sugimoto, M., Esaki, N., Soda, K., and Tanaka, H., Structural analysis of the L-methionine γ-lyase gene from Pseudomonas putida. J. Biochem., 117, 1120–1125 (1995).
  • 13) Yoshioka, T., Wada, T., Uchida, N., Maki, H., Yoshida, H., Ide, N., Kasai, H., Hojo, K., Shono, K., Maekawa, R., Yagi, S., Hoffman, R. M., and Sugita, K., Anticancer efficacy in vivo and in vitro, synergy with 5-fluorouracil, and safety of recombinant methioninase. Cancer Res., 58, 2583–2587 (1998).
  • 14) Tanaka, H., Esaki, N., and Soda, K., A versatile bacterial enzyme: L-methionine γ-lyase. Enzyme Microb. Technol., 7, 530–537 (1985).
  • 15) Johnston, M., Jankowski, D., Marcotte, P., Tanaka, H., Esaki, N., Soda, K., and Walsh, C., Suicide inactivation of bacterial cystathionine γ-synthase and methionine γ-lyase during processing of L-propargylglycine. Biochemistry, 18, 4690–4701 (1979).
  • 16) Nakayama, T., Esaki, N., Tanaka, H., and Soda, K., Chemical modification of cysteine residues of L-methionine γ-lyase. Agric. Biol. Chem., 52, 177–183 (1988).
  • 17) Messerschmidt, A., Worbs, M., Steegborn, C., Wahl, M. C., Huber, R., Laber, B., and Clausen, T., Determinants of enzymatic specificity in the Cys-Met-metabolism PLP-dependent enzymes family: crystal structure of cystathionine γ-lyase from yeast and intrafamiliar structure comparison. Biol. Chem., 384, 373–386 (2003).
  • 18) Nikulin, A., Revtovich, S., Morozova, E., Nevskaya, N., Nikonov, S., Garber, M., and Demidkina, T., High-resolution structure of methionine γ-lyase from Citrobacter freundii. Acta Crystallogr. D Biol. Crystallogr., 64, 211–218 (2008).
  • 19) Inoue, H., Inagaki, K., Adachi, N., Tamura, T., Esaki, N., Soda, K., and Tanaka, H., Role of tyrosine 114 of L-methionine γ-lyase from Pseudomonas putida. Biosci. Biotechnol. Biochem., 64, 2336–2343 (2000).
  • 20) Kudou, D., Misaki, S., Yamashita, M., Tamura, T., Takakura, T., Yoshioka, T., Yagi, S., Hoffman, R. M., Takimoto, A., Esaki, N., and Inagaki, K., Structure of the antitumor enzyme L-methionine γ-lyase from Pseudomonas putida at 1.8 Å resolution. J. Biochem., 141, 535–544 (2007).
  • 21) Dias, B., and Weimer, B., Purification and characterization of L-methionine γ-lyase from Brevibacterium linens BL2. Appl. Environ. Microbiol., 64, 3327–3331 (1998).
  • 22) Yoshimura, M., Nakano, Y., and Koga, T., L-Methionine-γ-lyase, as a target to inhibit malodorous bacterial growth by trifluoromethionine. Biochem. Biophys. Res. Commun., 292, 964–968 (2002).
  • 23) Coombs, G. H., and Mottram, J. C., Trifluoromethionine, a prodrug designed against methionine γ-lyase-containing pathogens, has efficacy in vitro and in vivo against Trichomonas vaginalis. Antimicrob. Agents Chemother., 45, 1743–1745 (2001).
  • 24) Johnston, M., Raines, R., Walsh, C., and Frestone, R. A., Mechanism-based enzyme inactivation using an allyl sulfoxide-allyl sulfenate ester rearrangement. J. Am. Chem. Soc., 102, 4241–4250 (1980).
  • 25) Nakayama, T., Esaki, N., Tanaka, H., and Soda, K., Specific labeling of the essential cysteine residue of L-methionine γ-lyase with a cofactor analogue, N-(bromoacetyl)pyridoxamine phosphate. Biochemistry, 27, 1587–1591 (1988).
  • 26) McKie, A. E., Edlind, T., Walker, J., Mottram, J. C., and Coombs, G. H., The primitive protozoon Trichomonas vaginalis contains two methionine γ-lyase genes that encode members of the γ-family of pyridoxal 5′-phosphate-dependent enzymes. J. Biol. Chem., 273, 5549–5556 (1998).
  • 27) Takakura, T., Mitsushima, K., Yagi, S., Inagaki, K., Tanaka, H., Esaki, N., Soda, K., and Takimoto, A., Assay method for antitumor L-methionine γ-lyase: comprehensive kinetic analysis of the complex reaction with L-methionine. Anal. Biochem., 327, 233–240 (2004).
  • 28) Takakura, T., Ito, T., Yagi, S., Notsu, Y., Itakura, T., Nakamura, T., Inagaki, K., Esaki, N., Hoffman, R. M., and Takimoto, A., High-level expression and bulk crystallization of recombinant L-methionine γ-lyase, an anticancer agent. Appl. Microbiol. Biotechnol., 70, 183–192 (2006).
  • 29) Nakayama, T., Esaki, N., Sugie, K., Beresov, T. T., Tanaka, H., and Soda, K., Purification of bacterial L-methionine γ-lyase. Anal. Biochem., 138, 421–424 (1984).
  • 30) Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685 (1970).
  • 31) Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248–254 (1976).
  • 32) Soda, K., Microdetermination of D-amino acids and D-amino acid oxidase activity with 3-methyl-2-benzothiazolone hydrazone hydrochloride. Anal. Biochem., 25, 228–235 (1968).
  • 33) Arima, J., Uesugi, Y., Uraji, M., Yatsushiro, S., Tsuboi, S., Iwabuchi, M., and Hatanaka, T., Modulation of Streptomyces leucine aminopeptidase by calcium: identification and functional analysis of key residues in activation and stabilization by calcium. J. Biol. Chem., 281, 5885–5894 (2006).
  • 34) Bertoldi, M., Cellini, B., Clausen, T., and Voltattorni, C. B., Spectroscopic and kinetic analyses reveal the pyridoxal 5′-phosphate binding mode and the catalytic features of Treponema denticola cystalysin. Biochemistry, 41, 9153–9164 (2002).
  • 35) Jansonius, J. N., Structure, evolution and action of vitamin B6-dependent enzymes. Curr. Opin. Struct. Biol., 8, 759–769 (1998).
  • 36) Schneider, G., Käck, H., and Lindqvist, Y., The manifold of vitamin B6 dependent enzymes. Structure, 8, R1-6 (2000).
  • 37) Clausen, T., Huber, R., Laber, B., Pohlenz, H. D., and Messerschmidt, A., Crystal structure of the pyridoxal-5′-phosphate dependent cystathionine β-lyase from Escherichia coli at 1.83 Å. J. Mol. Biol., 262, 202–224 (1996).
  • 38) Clausen, T., Huber, R., Prade, L., Wahl, M. C., and Messerschmidt, A., Crystal structure of Escherichia coli cystathionine γ-synthase at 1.5 Å resolution. EMBO J., 17, 6827–6838 (1998).
  • 39) Steegborn, C., Laber, B., Messerschmidt, A., Huber, R., and Clausen, T., Crystal structures of cystathionine γ-synthase inhibitor complexes rationalize the increased affinity of a novel inhibitor. J. Mol. Biol., 311, 789–801 (2001).
  • 40) DeLano, W. L., “The PyMOL Molecular Graphics System,” DeLano Scientific, San Carlos (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.