441
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Enzyme-Modified Cheese Exerts Inhibitory Effects on Allergen Permeation in Rats Suffering from Indomethacin-Induced Intestinal Inflammation

, , &
Pages 1740-1745 | Received 21 Jan 2008, Accepted 28 Apr 2008, Published online: 22 May 2014

  • 1) Sampson, H. A., Food allergy. Part 1: immunopathogenesis and clinical disorders. J. Allergy Clin. Immunol., 103, 717–728 (1999).
  • 2) Venter, C., Pereira, B., Voigt, K., Grundy, J., Clayton, C. B., Higgins, B., Arshad, S. H., and Dean, T., Prevalence and cumulative incidence of food hypersensitivity in the first 3 years of life. Allergy, 63, 354–359 (2008).
  • 3) Tanabe, S., Epitope peptides and immunotherapy. Curr. Protein Pept. Sci., 8, 109–118 (2007).
  • 4) Kaminogawa, S., Hachimura, S., Nakajima-Adachi, H., and Totsuka, M., Food allergens and mucosal immune systems with special reference to recognition of food allergens by gut-associated lymphoid tissue. Allergol. Int., 48, 15–23 (1999).
  • 5) Knutson, T. W., Bengtsson, U., Dannaeus, A., Ahlstedt, S., and Knutson, L., Effects of luminal antigen on intestinal albumin and hyaluronan permeability and ion transport in atopic patients. J. Allergy Clin. Immunol., 97, 1225–1232 (1996).
  • 6) Majamaa, H., and Isolauri, E., Evaluation of the gut mucosal barrier: evidence for increased antigen transfer in children with atopic eczema. J. Allergy Clin. Immunol., 97, 985–990 (1996).
  • 7) Kilcawley, K. N., Wilkinson, M. G., and Fox, P. F., Enzyme-modified cheese. Int. Dairy J., 8, 1–10 (1998).
  • 8) Korhonen, H., and Pihlanto, A., Bioactive peptides: production and functionality. Int. Dairy J., 16, 945–960 (2006).
  • 9) Haileselassie, S. S., Lee, B. H., and Gibbs, B. F., Purification and identification of potentially bioactive peptides from enzyme-modified cheese. J. Dairy Sci., 82, 1612–1617 (1999).
  • 10) Tanabe, S., Isobe, N., Miyauchi, E., Kobayashi, S., Suzuki, M., and Oda, M., Identification of a peptide in enzymatic hydrolyzate of cheese that inhibits ovalbumin permeation in Caco-2 cells. J. Agric. Food Chem., 54, 6904–6908 (2006).
  • 11) Tanabe, S., Tesaki, S., Watanabe, J., Fukushi, E., Sonoyama, K., and Kawabata, J., Isolation and structural elucidation of a peptide derived from Edam cheese that inhibits β-lactoglobulin transport. J. Dairy Sci., 86, 464–468 (2003).
  • 12) Yamada, T., Deitch, E., Specian, R. D., Perry, M. A., Sartor, R. B., and Grisham, M. A., Mechanisms of acute and chronic intestinal inflammation induced by indomethacin. Inflammation, 17, 641–662 (1993).
  • 13) Watanabe, J., Fukumoto, K., Fukushi, E., Sonoyama, K., and Kawabata, J., Isolation of tryptophan as an inhibitor of ovalbumin permeation and analysis of its suppressive effect on oral sensitization. Biosci. Biotechnol. Biochem., 68, 59–65 (2004).
  • 14) Ministry of Health, Labour and Welfare of Japan, Analytical methods for nutrients on the standards for nutrition labeling, EISHIN No. 13 (1999).
  • 15) Sukhotnik, I., Agam, M., Shamir, R., Shehadeh, N., Lurie, M., Coran, A. G., Shiloni, E., and Mogilner, J., Oral glutamine prevents gut mucosal injury and improves mucosal recovery following lipopolysaccharide endotoxemia in a rat. J. Surg. Res., 143, 379–384 (2007).
  • 16) Larson, S. D., Li, J., Chung, D. H., and Evers, B. M., Molecular mechanisms contributing to glutamine-mediated intestinal cell survival. Am. J. Physiol. Gastrointest. Liver Physiol., 293, G1262–1271 (2007).
  • 17) Tanabe, S., Watanabe, M., and Arai, S., Production of a high-glutamine oligopeptide fraction from gluten by enzymatic treatment and evaluation of its nutritional effect on the small intestine of rats. J. Food Biochem., 16, 235–248 (1993).
  • 18) Wang, Q., Fang, C. H., and Hasselgren, P. O., Intestinal permeability is reduced and IL-10 levels are increased in septic IL-6 knockout mice. Am. J. Physiol. Regul. Integr. Comp. Physiol., 281, R1013–1023 (2001).
  • 19) Rainsford, K. D., Stetsko, P. I., Sirko, S. P., and Debski, S., Gastrointestinal mucosal injury following repeated daily oral administration of conventional formulations of indometacin and other non-steroidal anti-inflammatory drugs to pigs: a model for human gastrointestinal disease. J. Pharm. Pharmacol., 55, 661–668 (2003).
  • 20) Vermeirssen, V., Van Camp, J., and Verstraete, W., Bioavailability of angiotensin I converting enzyme inhibitory peptides. Br. J. Nutr., 92, 357–366 (2004).
  • 21) Silva, S. V., and Malcata, F. X., Caseins as source of bioactive peptides. Int. Dairy J., 15, 1–15 (2005).
  • 22) Farhadi, A., Banan, A., Fields, J., and Keshavarzian, A., Intestinal barrier: an interface between health and disease. J. Gastroenterol. Hepatol., 18, 479–497 (2003).
  • 23) Miyauchi, E., Morita, H., Okuda, J., Sashihara, T., Shimizu, M., and Tanabe, S., Cell wall fraction of Enterococcus hirae ameliorates TNF-α-induced barrier impairment in the human epithelial tight junction. Lett. Appl. Microbiol., 46, 469–476 (2008).
  • 24) Tanabe, S., Analysis of food allergen structures and development of foods for allergic patients. Biosci. Biotechnol. Biochem., 72, 649–659 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.