361
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of Multi-Target and Single-Target Liposomal Drugs for the Treatment of Gastric Cancer

, , , , &
Pages 1586-1594 | Received 13 Feb 2008, Accepted 25 Mar 2008, Published online: 22 May 2014

  • 1) Chen, T. H., Hsu, Y. T., Chen, C. H., Kao, S. H., and Lee, H. M., Tanshinone IIA from Salvia miltiorrhiza induces heme oxygenase-1 expression and inhibits lipopolysaccharide-induced nitric oxide expression in RAW 264.7 cells. Mitochondrion, 7, 101–105 (2007).
  • 2) Wang, N., Luo, H. W., Niwa, M., and Ji, J., A new platelet aggregation inhibitor from Salvia miltiorrhiza. Planta Med., 55, 390–391 (1989).
  • 3) Park, E. J., Zhao, Y. Z., Kim, Y. C., and Sohn, D. H., PF2401-SF, standardized fraction of Salvia miltiorrhiza and its constituents, tanshinone I, tanshinone IIA, and cryptotanshinone, protect primary cultured rat hepatocytes from bile acid-induced apoptosis by inhibiting JNK phosphorylation. Food Chem. Toxicol., 45, 1891–1898 (2007).
  • 4) Wang, X., Bastow, K. F., Sun, C. M., Lin, Y. L., Yu, H. J., Don, M. J., Wu, T. S., Nakamura, S., and Lee, K. H., Antitumor agents. 239. Isolation, structure elucidation, total synthesis, and anti-breast cancer activity of neo-tanshinlactone from Salvia miltiorrhiza. J. Med. Chem., 47, 5816–5819 (2004).
  • 5) Liu, J., Shen, H. M., and Ong, C. N., Salvia miltiorrhiza inhibits cell growth and induces apoptosis in human hepatoma HepG(2) cells. Cancer Lett., 153, 85–93 (2000).
  • 6) Franek, K. J., Zhou, Z., Zhang, W. D., and Chen, W. Y., In vitro studies of baicalin alone or in combination with Salvia miltiorrhiza extract as a potential anti-cancer agent. Int. J. Oncol., 26, 217–224 (2005).
  • 7) Lee, D.-S., Lee, S.-H., Kwon, G.-S., Lee, H.-K., Woo, J.-H., Kim, J.-G., and Hong, S.-D., Inhibition of DNA topoisomerase I by dihydrotanshinone I, components of a medicinal herb Salvia miltiorrhiza Bunge. Biosci. Biotechnol. Biochem., 63, 1370–1373 (1999).
  • 8) Lee, D. S., and Lee, S. H., Biological activity of dihydrotanshinone I: effect on apoptosis. J. Biosci. Bioeng., 89, 292–293 (2000).
  • 9) Sessa, G., and Weissmann, G., Phospholipid spherules (liposomes) as a model for biological membranes. J. Lipid Res., 9, 310–318 (1968).
  • 10) Weinstein, J. N., and Leserman, L. D., Liposomes as drug carriers in cancer chemotherapy. Pharmacol. Ther., 24, 207–233 (1984).
  • 11) Swenson, C. E., Bolcsak, L. E., Batist, G., Guthrie, T. H., Jr., Tkaczuk, K. H., Boxenbaum, H., Welles, L., Chow, S. C., Bhamra, R., and Chaikin, P., Pharmacokinetics of doxorubicin administered i.v. as Myocet (TLC D-99; liposome-encapsulated doxorubicin citrate) compared with conventional doxorubicin when given in combination with cyclophosphamide in patients with metastatic breast cancer. Anticancer Drugs, 14, 239–246 (2003).
  • 12) Harris, L., Batist, G., Belt, R., Rovira, D., Navari, R., Azarnia, N., Welles, L., and Winer, E., Liposome-encapsulated doxorubicin compared with conventional doxorubicin in a randomized multicenter trial as first-line therapy of metastatic breast carcinoma. Cancer, 94, 25–36 (2002).
  • 13) Klibanov, A. L., Maruyama, K., Torchilin, V. P., and Huang, L., Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett., 268, 235–237 (1990).
  • 14) Leserman, L. D., Barbet, J., Kourilsky, F., and Weinstein, J. N., Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein A. Nature, 288, 602–604 (1980).
  • 15) Leserman, L. D., Weinstein, J. N., Moore, J. J., and Terry, W. D., Specific interaction of myeloma tumor cells with hapten-bearing liposomes containing methotrexate and carboxyfluorescein. Cancer Res., 40, 4768–4774 (1980).
  • 16) Torchilin, V. P., Klibanov, A. L., Huang, L., O’Donnell, S., Nossiff, N. D., and Khaw, B. A., Targeted accumulation of polyethylene glycol-coated immunoliposomes in infarcted rabbit myocardium. FASEB J., 6, 2716–2719 (1992).
  • 17) Blume, G., Cevc, G., Crommelin, M. D., Bakker-Woudenberg, I. A., Kluft, C., and Storm, G., Specific targeting with poly(ethylene glycol)-modified liposomes: coupling of homing devices to the ends of the polymeric chains combines effective target binding with long circulation times. Biochim. Biophys. Acta, 1149, 180–184 (1993).
  • 18) Torchilin, V. P., Levchenko, T. S., Lukyanov, A. N., Khaw, B. A., Klibanov, A. L., Rammohan, R., Samokhin, G. P., and Whiteman, K. R., p-Nitrophenylcarbonyl-PEG-PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups. Biochim. Biophys. Acta, 1511, 397–411 (2001).
  • 19) Murray, C. J., and Lopez, A. D., Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet, 349, 1498–1504 (1997).
  • 20) Pisani, P., Parkin, D. M., Bray, F., and Ferlay, J., Estimates of the worldwide mortality from 25 cancers in 1990. Int. J. Cancer, 83, 18–29 (1999).
  • 21) Cli, F., Celik, I., Aykan, F., Uner, A., Demirkazik, A., Ozet, A., Ozguroglu, M., Tas, F., Akbulut, H., and Firat, D., A randomized phase III trial of etoposide, epirubicin, and cisplatin versus 5-fluorouracil, epirubicin, and cisplatin in the treatment of patients with advanced gastric carcinoma. Cancer, 83, 2475–2480 (1998).
  • 22) Bauer, W., Briner, U., Doepfner, W., Haller, R., Huguenin, R., Marbach, P., Petcher, T. J., and Pless, J., SMS 201-995: a very potent and selective octapeptide analogue of somatostatin with prolonged action. Life Sci., 31, 1133–1140 (1982).
  • 23) Lamberts, S. W., Oosterom, R., Neufeld, M., and del Pozo, E., The somatostatin analog SMS 201-995 induces long-acting inhibition of growth hormone secretion without rebound hypersecretion in acromegalic patients. J. Clin. Endocrinol. Metab., 60, 1161–1165 (1985).
  • 24) Miller, G. V., Farmery, S. M., Woodhouse, L. F., and Primrose, J. N., Somatostatin binding in normal and malignant human gastrointestinal mucosa. Br. J. Cancer, 66, 391–395 (1992).
  • 25) Szepeshazi, K., Schally, A. V., Nagy, A., Wagner, B. W., Bajo, A. M., and Halmos, G., Preclinical evaluation of therapeutic effects of targeted cytotoxic analogs of somatostatin and bombesin on human gastric carcinomas. Cancer, 98, 1401–1410 (2003).
  • 26) Brooks, P. C., Role of integrins in angiogenesis. Eur. J. Cancer, 32A, 2423–2429 (1996).
  • 27) Stromblad, S., Becker, J. C., Yebra, M., Brooks, P. C., and Cheresh, D. A., Suppression of p53 activity and p21WAF1/CIP1 expression by vascular cell integrin alphaVbeta3 during angiogenesis. J. Clin. Invest., 98, 426–433 (1996).
  • 28) Stromblad, S., and Cheresh, D. A., Integrins, angiogenesis and vascular cell survival. Chem. Biol., 3, 881–885 (1996).
  • 29) Chung, T. W., Yang, M. G., Liu, D. Z., Chen, W. P., Pan, C. I., and Wang, S. S., Enhancing growth human endothelial cells on Arg-Gly-Asp (RGD) embedded poly (epsilon-caprolactone) (PCL) surface with nanometer scale of surface disturbance. J. Biomed. Mater. Res. A, 72, 213–219 (2005).
  • 30) Ho, Y. S., Wu, C. H., Chou, H. M., Wang, Y. J., Tseng, H., Chen, C. H., Chen, L. C., Lee, C. H., and Lin, S. Y., Molecular mechanisms of econazole-induced toxicity on human colon cancer cells: G0/G1 cell cycle arrest and caspase 8-independent apoptotic signaling pathways. Food Chem. Toxicol., 43, 1483–1495 (2005).
  • 31) Osborne, C. K., Coronado, E. B., and Robinson, J. P., Human breast cancer in the athymic nude mouse: cytostatic effects of long-term antiestrogen therapy. Eur. J. Cancer Clin. Oncol., 23, 1189–1196 (1987).
  • 32) Lee, W. S., Chen, R. J., Wang, Y. J., Tseng, H., Jeng, J. H., Lin, S. Y., Liang, Y. C., Chen, C. H., Lin, C. H., Lin, J. K., Ho, P. Y., Chu, J. S., Ho, W. L., Chen, L. C., and Ho, Y. S., In vitro and in vivo studies of the anticancer action of terbinafine in human cancer cell lines: G0/G1 p53-associated cell cycle arrest. Int. J. Cancer, 106, 125–137 (2003).
  • 33) Gerdes, J., Lemke, H., Baisch, H., Wacker, H. H., Schwab, U., and Stein, H., Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J. Immunol., 133, 1710–1715 (1984).
  • 34) Inda, A. M., Andrini, L. B., Garcia, M. N., Garcia, A. L., Fernandez Blanco, A., Furnus, C. C., Galletti, S. M., Prat, G. D., and Errecalde, A. L., Evaluation of angiogenesis with the expression of VEGF and CD34 in human non-small cell lung cancer. J. Exp. Clin. Cancer Res., 26, 375–378 (2007).
  • 35) Huang, C. M., Wu, Y. T., and Chen, S. T., Targeting delivery of paclitaxel into tumor cells via somatostatin receptor endocytosis. Chem. Biol., 7, 453–461 (2000).
  • 36) Koning, G. A., Schiffelers, R. M., Wauben, M. H., Kok, R. J., Mastrobattista, E., Molema, G., ten Hagen, T. L., and Storm, G., Targeting of angiogenic endothelial cells at sites of inflammation by dexamethasone phosphate-containing RGD peptide liposomes inhibits experimental arthritis. Arthritis Rheum., 54, 1198–1208 (2006).
  • 37) Xiong, X. B., Huang, Y., Lu, W. L., Zhang, X., Zhang, H., Nagai, T., and Zhang, Q., Intracellular delivery of doxorubicin with RGD-modified sterically stabilized liposomes for improved antitumor efficacy: in vitro and in vivo. J. Pharm. Sci., 94, 1782–1793 (2005).
  • 38) Xiong, X. B., Huang, Y., Lu, W. L., Zhang, X., Zhang, H., Nagai, T., and Zhang, Q., Enhanced intracellular delivery and improved antitumor efficacy of doxorubicin by sterically stabilized liposomes modified with a synthetic RGD mimetic. J. Control. Release, 107, 262–275 (2005).
  • 39) Zhang, Z. W., Patchett, S. E., and Farthing, M. J., Topoisomerase I inhibitor (camptothecin)-induced apoptosis in human gastric cancer cells and the role of wild-type p53 in the enhancement of its cytotoxicity. Anticancer Drugs, 11, 757–764 (2000).
  • 40) Ikegami, T., Matsuzaki, Y., Al Rashid, M., Ceryak, S., Zhang, Y., and Bouscarel, B., Enhancement of DNA topoisomerase I inhibitor-induced apoptosis by ursodeoxycholic acid. Mol. Cancer Ther., 5, 68–79 (2006).
  • 41) Morris, E. J., and Geller, H. M., Induction of neuronal apoptosis by camptothecin, an inhibitor of DNA topoisomerase-I: evidence for cell cycle-independent toxicity. J. Cell Biol., 134, 757–770 (1996).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.