164
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Characterization of a Novel Polyphenol-Specific Oligoxyloside Transfer Reaction by a Family 11 Xylanase from Bacillus sp. KT12

, , , , &
Pages 2285-2293 | Received 25 Feb 2008, Accepted 24 May 2008, Published online: 22 May 2014

  • 1) Yan, X., Murphy, B. T., Hammond, G. B., Vinson, J. A., and Neto, C. C., Antioxidant activities and antitumor screening of extracts from cranberry fruit. J. Agric. Food Chem., 50, 5844–5849 (2002).
  • 2) Nishimura, T., Kometani, T., Okada, S., Ueno, N., and Yamamoto, T., Inhibitory effects of hydroquinone-α-glucoside on melanin synthesis. Yakugaku Zasshi (in Japanese), 115, 626–632 (1995).
  • 3) Funayama, M., Arakawa, H., Yamamoto, R., Nishino, T., Shin, T., and Murao, S., Effects of α- and β-arbutin on activity of tyrosinases from mushroom and mouse melanoma. Biosci. Biotechnol. Biochem., 59, 143–144 (1995).
  • 4) Sugimoto, K., Nomura, K., Nishimura, T., Kiso, T., and Kuriki, T., Syntheses of α-arbutin-α-glycosides and their inhibitory effects on human tyrosinase. J. Biosci. Bioeng., 99, 272–276 (2005).
  • 5) Sulistyo, J., Kamiyama, Y., Ito, H., and Yasui, T., Enzymatic synthesis of hydroquinone β-xyloside from xylooligosaccharides. Biosci. Biotechnol. Biochem., 58, 1311–1313 (1994).
  • 6) Shinoyama, H., Kamiyama, Y., and Yasui, T., Enzymatic synthesis of alkyl β-xylosides from xylobiose by application of the transxylosyl reaction of Aspergillus niger β-xylosidase. Agric. Biol. Chem., 52, 2197–2202 (1988).
  • 7) Shinoyama, H., Ando, A., Fujii, T., and Yasui, T., The possibility of enzymatic synthesis of a variety of β-xylosides using the transfer reaction of Aspergillus niger β-xylosidase. Agric. Biol. Chem., 55, 849–850 (1991).
  • 8) Sinnott, M. L., Catalytic mechanism of enzymic glycosyl transfer. Chem. Rev., 90, 1171–1202 (1990).
  • 9) Matsumura, S., Sakiyama, K., and Toshima, K., Preparation of octyl β-D-xylobioside and xyloside by xylanase-catalyzed direct transglycosylation reaction of xylan and octanol. Biotechol. Lett., 21, 17–22 (1999).
  • 10) Kadi, N., and Crouzet, J., Transglycosylation reaction of endoxylanase from Trichoderma longibrachiatum. Food Chem., 106, 466–474 (2008).
  • 11) Rivas, R., Garcia-Fraile, P., Mateos, P. F., Martinez-Molina, E., and Velazquez, E., Characterization of xylanolytic bacteria present in the bract phyllosphere of the date palm Phoenix dactylifera. Lett. Appl. Microbiol., 44, 181–187 (2007).
  • 12) Suto, M., Takebayashi, M., Saito, K., Tanaka, M., Yokota, A., and Tomita, F., Endophytes as producers of xylanase. J. Biosci. Bioeng., 93, 88–90 (2002).
  • 13) Nielsen, P., and Sorensen, J., Multi-target and medium-independent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. FEMS Microbiol. Ecol., 22, 183–192 (1997).
  • 14) Kondo, R., Yamagami, H., and Sakai, K., Xylosylation of phenolic hydroxyl groups of the monomeric lignin model compounds 4-methylguaiacol and vanillyl alcohol by Coriolus versicolor. Appl. Environ. Microbiol., 59, 438–441 (1993).
  • 15) Shinoyama, H., Tsuura, M., Kobayashi, Y., Saito, M., and Fujii, T., Xylanase of Pestalotiopsis spp. isolated from healthy leaves of Cryptomeria japonica and their applications. In “Biotechnology of Lignocellulose Degradation and Biomass Utilization,” eds. Ohnishi, K., Sakka, K., Karita, S., Kimura, T., Sakka, M., and Ohnishi, Y., UNI Publishers, Tokyo, pp. 541–542 (2004).
  • 16) Smogyi, M., Notes on sugar determination. J. Biol. Chem., 195, 19–23 (1952).
  • 17) Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248–254 (1976).
  • 18) Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685 (1970).
  • 19) Gradwell, M. J., Kogelberg, H., and Frenkiel, T. A., Applying excitation sculpting to construct singly and doubly selective 1D NMR experiments. J. Magn. Reson., 124, 267–270 (1997).
  • 20) Chiku, K., Shinoyama, H., Uzawa, J., and Seki, H., Rapid analysis of glycosides by one-dimensional NMR methods. Twenty-Fourth 24th AOmA TCMMQ Joint Symposium (in Japanese), 60–63 (2007).
  • 21) Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 25, 3389–3402 (1997).
  • 22) Kadi, N., Belloy, L., Chalier, P., and Crouzet, J. C., Enzymatic synthesis of aroma compound xylosides using transfer reaction by Trichoderma longibrachiatum xylanase. J. Agric. Food Chem., 50, 5552–5557 (2002).
  • 23) Jiang, Z., Zhu, Y., Li, L., Yu, X., Kusakabe, I., Kitaoka, M., and Hayashi, K., Transglycosylation reaction of xylanase B from the hyperthermophilic Thermotoga maritima with the ability of synthesis of tertiary alkyl β-D-xylobiosides and xylosides. J. Biotechnol., 114, 125–134 (2004).
  • 24) Kurakake, M., Fujii, T., Yata, M., Okazaki, T., and Komaki, T., Characteristics of transxylosylation by β-xylosidase from Aspergillus awamori K4. Biochim. Biophy. Acta, 1726, 272–279 (2005).
  • 25) Nakamura, T., Toshima, K., and Matsumura, S., One-step synthesis of n-octyl β-D-xylotrioside, xylobioside and xyloside from xylan and n-octanol using acetone powder of Aureobasidium pullulans in supercritical fluids. Biotechnol. Lett., 22, 1183–1189 (2000).
  • 26) Shinoyama, H., Kamiyama, Y., and Yasui, T., Superiority of Aspergillus niger β-xylosidase for the enzymatic synthesis of alkyl β-xylosides in the presence of a variety of alcohols. Agric. Biol. Chem., 52, 2375–2377 (1988).
  • 27) Shinoyama, H., Kamiyama, Y., Shoun, H., and Yasui, T., Accumulation factor of alkyl-β-xyloside produced by Aspergillus niger β-xylosidase. Hakkokogaku Kaishi (in Japanese), 69, 159–162 (1991).
  • 28) Tramice, A., Pagnotta, E., Romano, I., Gambacorta, A., and Trincone, A., Transglycosylation reactions using glycosyl hydrolases from Thermotoga neapolitana, a marine hydrogen-producing bacterium. J. Mol. Cat. B: Enzymatic, 47, 21–27 (2007).
  • 29) Eneyskaya, E. V., Brumer, H., 3rd, Backinowsky, L. V., Ivanen, D. R., Kulminskaya, A. A., Shabalin, K. A., and Neustroev, K. N., Enzymatic synthesis of β-xylanase substrates: transglycosylation reactions of the β-xylosidase from Aspergillus sp. Carbohydr. Res., 338, 313–325 (2003).
  • 30) Nishizawa, K., Amano, Y., Isobe, T., Nozaki, K., Shiroishi, M., and Kanda, T., Aglycone specificity in transglycosylation of a xylanase produced from Basidiomycete, Hypsizigus marmoreus during the mushroom cultivation. J. Appl. Glycoci. (in Japanese), 49, 137–143 (2002).
  • 31) Nakano, H., Kitahata, S., Kinugasa, H., Watanabe, Y., Fujimoto, H., Ajisaka, K., and Takenishi, S., Transfer raction ctalyzed by eo-β-1,4-galactanase from Bacillus subtilis. Agric. Biol. Chem., 55, 2075–2082 (1991).
  • 32) Nakano, H., Takenishi, S., and Watanabe, Y., Transfer raction ctalyzed by glactanase from Penicillium citrinum. Agric. Biol. Chem., 52, 1319–1322 (1988).
  • 33) Nishimura, T., Kometani, T., Takii, H., Terada, Y., and Okada, S., Acceptor specificity in the glucosylation reaction of Bacillus subtilis X-23 α-amylase towards various phenolic compounds and the structure of kojic acid glucoside. J. Ferment. Bioeng., 78, 37–41 (1994).
  • 34) Polizeli, M. L., Rizzatti, A. C., Monti, R., Terenzi, H. F., Jorge, J. A., and Amorim, D. S., Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol., 67, 577–591 (2005).
  • 35) Joshi, M. D., Sidhu, G., Pot, I., Brayer, G. D., Withers, S. G., and McIntosh, L. P., Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase. J. Mol. Biol., 299, 255–279 (2000).
  • 36) Andjelkovic, M., Van Camp, J., De Meulenaer, B., Depaemelaere, G., Socaciu, C., Verloo, M., and Verhe, R., Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chem., 98, 23–31 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.