273
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Genotoxicity and Estrogenic Activity of 3,3′-Dinitrobisphenol A in Goldfish

, , &
Pages 2118-2123 | Received 01 Apr 2008, Accepted 07 May 2008, Published online: 22 May 2014

  • 1) Krishnan, A. V., Stathis, P., Permuth, S. F., Tokes, L., and Feldman, D., Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology, 132, 2279–2286 (1993).
  • 2) Hashimoto, Y., and Nakamura, M., Estrogenic activity of dental materials and bisphenol-A related chemicals in vitro. Dent. Mater. J., 19, 245–262 (2000).
  • 3) Matthews, J. B., Twomey, K., and Zacharewski, T. R., In vitro and in vivo interactions of bisphenol A and its metabolite, bisphenol A glucuronide, with estrogen receptors α and β. Chem. Res. Toxicol., 14, 149–157 (2001).
  • 4) Akingbemi, B. T., Sottas, C. M., Koulova, A. I., Klinefelter, G. R., and Hardy, M. P., Inhibition of testicular steroidogenesis by the xenoestrogen bisphenol A is associated with reduced pituitary luteinizing hormone secretion and decreased steroidogenic enzyme gene expression in rat Leydig cells. Endocrinology, 145, 592–603 (2004).
  • 5) Takayanagi, S., Tokunaga, T., Liu, X., Okada, H., Matsushima, A., and Shimohigashi, Y., Endocrine disruptor bisphenol A strongly binds to human estrogen-related receptor gamma (ERRgamma) with high constitutive activity. Toxicol. Lett., 1, 95–105 (2006).
  • 6) Haworth, S., Lawlor, T., Mortelmans, K., Speck, W., and Zeiger, E., Salmonella mutagenicity test results for 250 chemicals. Environ. Mutagen., 5, 1–142 (1983).
  • 7) Ivett, J. L., Brown, B. M., Rodegers, C., Anderson, B. E., Resnick, M. A., and Zeiger, E., Chrmosomal aberrations and sister chromatid exchange tests in Chinese hamster ovary cells in vitro. IV. Results with 15 chemicals. Environ. Mol. Mutagen., 14, 165–187 (1989).
  • 8) Gudi, R., Xu, J., and Thilagar, A., Assessment of the in vivo aneuploidy/micronucleus assay in mouse bone marrow cells with 16 chemicals. Environ. Mol. Mutagen., 20, 106–116 (1992).
  • 9) Hilliard, C. A., Armstrong, M. J., Bradt, C. I., Hill, R. B., Greenwood, S. K., and Galloway, S. M., Chromosome aberrations in vitro related to cytotoxicity of nonmutagenic chemicals and metabolic poisons. Environ. Mol. Mutagen., 31, 316–326 (1998).
  • 10) Tayama, S., Nakagawa, Y., and Tayama, K., Genotoxic effects of environmental estrogen-like compounds in CHO-K1 cells. Mutat. Res., 8, 114–125 (2008).
  • 11) Tsutsui, T., Tamura, Y., Yagi, E., Hasegawa, K., Takahashi, M., Maizumi, N., Yamaguchi, F., and Barrett, J. C., Bisphenol-A induces cellular transformation, aneuploidy and DNA adduct formation in cultured Syrian hamster embryo cells. Int. J. Cancer, 75, 290–294 (1998).
  • 12) Zhong, W., Hu, C., and Wang, M., Nitrate and nitrite in vegetables from north China: content and intake. Food Addit. Contam., 19, 1125–1129 (2002).
  • 13) Walker, R., Nitrates, nitrites and N-nitrosocompounds: a review of the occurrence in food and diet and the toxicological implications. Food Addit. Contam., 7, 717–768 (1990).
  • 14) Wakabayashi, K., Nagao, M., and Sugimura, T., Mutagens and carcinogens produced by the reaction of environmental aromatic compounds with nitrite. Cancer Surv., 8, 385–399 (1989).
  • 15) Kikugawa, K., and Kato, T., Formation of a mutagenic diazoquinone by interaction of phenol with nitrite. Food Chem. Toxicol., 26, 209–214 (1988).
  • 16) Kato, T., Kojima, K., Hiramoto, K., and Kikugawa, K., DNA strand breakage by hydroxyphenyl radicals generated from mutagenic diazoquinone compounds. Mutat. Res., 268, 105–114 (1992).
  • 17) Masuda, S., Terashima, Y., Sano, A., Kuruto, R., Sugiyama, Y., Shimoi, K., Tanji, K., Yoshioka, H., Terao, Y., and Kinae, N., Changes in the mutagenic and estrogenic activities of bisphenol A upon treatment with nitrite. Mutat. Res., 585, 137–146 (2005).
  • 18) Warner, K. E., and Jenkins, J. J., Effects of 17alpha-ethinylestradiol and bisphenol A on vertebral development in the fathead minnow (Pimephales promelas). Environ. Toxicol. Chem., 26, 732–737 (2007).
  • 19) Tabata, A., Watanabe, N., Yamamoto, I., Ohnishi, Y., Itoh, M., Kamei, T., Magara, Y., and Terao, Y., The effect of bisphenol A and chlorinated derivatives of bisphenol A on the level of serum vitellogenin in Japanese medaka (Oryzias latipes). Water Sci. Technol., 50, 125–132 (2004).
  • 20) Ishibashi, H., Tachibana, K., Tsuchimoto, M., Soyano, K., Tatarazako, N., Matsumura, N., Tomiyasu, Y., Tominaga, N., and Arizono, K., Effects of nonylphenol and phytoestrogen-enriched diet on plasma vitellogenin, steroid hormone, hepatic cytochrome P450 1A, and glutathione-S-transferase values in goldfish (Carassius auratus). Comp. Med., 54, 54–62 (2004).
  • 21) Masuda, S., Deguchi, Y., Masuda, Y., Watanabe, T., Nukaya, H., Terao, Y., Takamura, T., Wakabayashi, K., and Kinae, N., Genotoxicity of 2-[2-(acetylamino)-4-[bis(2-hydroxyethyl)amino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-6) and 4-amino-3,3′-dichloro-5,4′-dinitro-biphenyl (ADDB) in goldfish (Carassius auratus) using the micronucleus test and the comet assay. Mutat. Res., 9, 33–40 (2004).
  • 22) Zhong, X. P., Xu, Y., Liang, Y., Liao, T., and Wang, Z. J., Vitellogenin in rare minnow (Gobiocypris rarus): identification and induction by waterborne diethylstilbestrol. Comt. Biochem. Physiol. C, 137, 291–298 (2004).
  • 23) Tyler, C. R., van der Eerden, B., Jobling, S., Panter, G., and Sumpter, J. P., Measurement of vitellogenin, a biomarker for exposure to oestrogenic chemicals, in a wide variety of cyprinid fish. J. Comp. Pysiol. B, 166, 418–426 (1996).
  • 24) Tice, R., Strauss, G. H. S., and Peters, W. P., High-dose combination alkylating agents with autologous bone-marrow support in patients with breast cancer: preliminary assessment of DNA damage in individual peripheral blood lymphocytes using cell gel electrophoresis assay. Mutat. Res., 271, 101–113 (1992).
  • 25) Ueda, T., Hayashi, M., Ohtsuka, Y., Nakamura, T., Kobayashi, J., and Sofuni, T., A preliminary study of the micronucleus test by acridine orange fluorescent staining compared with chromosomal aberration test using fish erythropoietic and embryonic cells. Water Sci. Technol., 25, 235–240 (1992).
  • 26) Hayashi, M., Ueda, T., Uyeno, K., Wada, K., Kinae, N., Saotome, K., Tanaka, N., Takai, A., Sasaki, Y. F., Asano, N., Sofuni, T., and Ojima, Y., Development of genotoxicity assay systems that use aquatic organisms. Mutat. Res., 399, 125–133 (1998).
  • 27) Mommsen, T. P., and Walsh, P. J., Vitellogenesis and oocyte assembly. Fish Physiol., 11A, 347–406 (1988).
  • 28) Tyler, C. R., and Routledge, E. J., Oestrogenic effects in fish in English rivers with evidence of their causation. Pure Appl. Chem., 70, 1795–1804 (1998).
  • 29) Masuda, S., Terashima, Y., Sano, A., Okada, M., Deguchi, Y., Toyoizumi, T., Sugiyama, C., Kumazawa, S., Kamihira, M., Yoshioka, H., Terao, Y., and Kinae, N., Changes in the mutagenic and estrogenic activities of 17beta-estradiol after treatment with nitrite. Biosci. Biotechnol. Biochem., 70, 890–896 (2006).
  • 30) Deguchi, Y., Toyoizumi, T., Masuda, S., Yasuhara, A., Mohri, S., Yamada, M., Inoue, Y., and Kinae, N., Evaluation of mutagenic activities of leachates in landfill sites by microuncleus test and comet assay using goldfish. Mutat. Res., 627, 178–185 (2007).
  • 31) Michael, L., Jung, K., and Moon-Koo, C., Enhanced prediction of potential rodent carcinogenicity by utilizing comet assay and apoptotic assay in combination. Mutat. Res., 541, 9–19 (2003).
  • 32) Hembrook, D. C., and Sartolli, A. C., Biochemistry of misonidazole reduction by NADPH-cytochrome c (P450) reductase. Mol. Pharmacol., 29, 168–172 (1985).
  • 33) Eranster, L., and Navazio, F., Soluble diaphorase in animal tissues. Acta Chem. Scand., 12, 595 (1958).
  • 34) Ernster, L., DT diaphorase. Hist. Enzymol., 10, 309–317 (1967).
  • 35) Edwards, D. I., The action of metronidazoles on DNA. J. Antimicrobiol., 3, 43–48 (1977).
  • 36) Edwards, D. J., Reduction of nitroimidazoles and DNA damage. Biochem. Pharmacol., 35, 53–58 (1986).
  • 37) Steinheimer, T. R., Scoggin, K. D., and Kramer, L. A., Agricultural chemical movement through a field-sized watershed in Iowa: subsurface hydrology and distribution of nitrate in groundwater. Environ. Sci. Technol., 32, 1039–1047 (1998).
  • 38) Aber, J. D., Hendrey, G. R., Botkin, B., Francis, A. J., and Melillo, J. M., Potential effects of acid precipitation on soil nitrogen and productivity of forest ecosystems. Water Air Soil Polllut., 18, 405–412 (1982).
  • 39) Skjekbale, B. L., Stoddard, J. L., and Andersen, T., Trends in surface water acidification in Europe and North America (1989–1998). Water Air Soil Pollut., 130, 787–792 (2001).
  • 40) Telscher, M. J., Schuller, U., Schmidt, B., and Schaffer, A., Occurrence of a nitro metabolite of a defined nonylphenol isomer in soil/sewage sludge mixtures. Environ. Sci. Technol., 15, 7896–7900 (2005).
  • 41) Ohe, T., Mutagenicity of photochemical reaction products of polycyclic aromatic hydrocarbons with nitrite. Sci. Total Environ., 39, 161–175 (1984).
  • 42) Suzuki, J., Hagino, T., and Suzuki, S., Formation of 1-nitropyrene by photolysis of pyrene in water containing nitrite ion. Chemosphere, 16, 859–867 (1987).
  • 43) Hasei, T., Watanabe, T., and Hirayama, T., Determination of 3,6-dinitrobenzo[e]pyrene in surface soil and airborne particles by high-performance liquid chromatography with fluorescence detection. J. Chromatogr. A, 1135, 65–70 (2006).
  • 44) Watanabe, T., Hasei, T., Takahashi, T., Asanoma, M., Murahashi, T., Hirayama, T., and Wakabayashi, K., Detection of a novel mutagen, 3,6-dinitrobenzo[e]pyrene, as a major contaminant in surface soil in Osaka and Aichi Prefectures, Japan. Chem. Res. Toxicol., 18, 283–289 (2005).
  • 45) Spain, J. C., Biodegradation of nitro-aromatic compounds. Annu. Rev. Microbiol., 49, 523–555 (1995).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.