401
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Development of a Genotyping Method for Potato Scab Pathogens Based on Multiplex PCR

, , , &
Pages 2324-2334 | Received 09 Apr 2008, Accepted 22 May 2008, Published online: 22 May 2014

  • 1) Loria, R., Bukhalid, R. A., Fry, B. A., and King, R. R., Plant pathogenicity in the genus Streptomyces. Plant Dis., 81, 836–846 (1997).
  • 2) Tanaka, F., Identification and quantification of pathogens in Japan. In “Proceedings of the International Potato Scab Symposium,” eds. Naito, S., Kondo, N., Akino, S., Ogoshi, A., and Tanaka, F., Hokkaido University, Sapporo, pp. 56–65 (2004).
  • 3) Valkonen, J. P. T., Potato scab in Scandinavian countries. In “Proceedings of the International Potato Scab Symposium,” eds. Naito, S., Kondo, N., Akino, S., Ogoshi, A., and Tanaka, F., Hokkaido University, Sapporo, pp. 76–81 (2004).
  • 4) Park, D. H., Kim, J. S., Shrestha, R., Hur, J. H., and Lim, C. K., Characterization of Streptomycetes causing potato common scab and its control in Korea. In “Proceedings of the International Potato Scab Symposium,” eds. Naito, S., Kondo, N., Akino, S., Ogoshi, A., and Tanaka, F., Hokkaido University, Sapporo, pp. 89–100 (2004).
  • 5) Srivastava, J. S., and Mishra, K. K., Common scab of potato in India: varietal screening and disease management. In “Proceedings of the International Potato Scab Symposium,” eds. Naito, S., Kondo, N., Akino, S., Ogoshi, A., and Tanaka, F., Hokkaido University, Sapporo, pp. 113–124 (2004).
  • 6) Tarn, T. R., Murphy, A. M., King, R. R., and Lazarovits, G., Potato scab in Canada: breeding approaches for the control of potato scab. In “Proceedings of the International Potato Scab Symposium,” eds. Naito, S., Kondo, N., Akino, S., Ogoshi, A., and Tanaka, F., Hokkaido University, Sapporo, pp. 137–148 (2004).
  • 7) Liu, D., Zhao, W. Q., and Xiao, K., Overview of potato scab in China. In “Proceedings of the International Potato Scab Symposium,” eds. Naito, S., Kondo, N., Akino, S., Ogoshi, A., and Tanaka, F., Hokkaido University, Sapporo, pp. 182–189 (2004).
  • 8) Wilson, C. R., A summary of common scab disease of potato research from Australia. In “Proceedings of the International Potato Scab Symposium,” eds. Naito, S., Kondo, N., Akino, S., Ogoshi, A., and Tanaka, F., Hokkaido University, Sapporo, pp. 198–214 (2004).
  • 9) Barrera, V. A., Kageyama, K., and Kobayasi, K., Detection of Streptomyces species in potato tubers and field soils in Argentina using PCR. In “Proceedings of the International Potato Scab Symposium,” eds. Naito, S., Kondo, N., Akino, S., Ogoshi, A., and Tanaka, F., Hokkaido University, Sapporo, pp. 274–278 (2004).
  • 10) Lambert, D. H., and Loria, R., Streptomyces scabies sp. nov., nom. rev. Int. J. Syst. Bacteriol., 39, 387–392 (1989).
  • 11) Lambert, D. H., and Loria, R., Streptomyces acidiscabies sp. nov. Int. J. Syst. Bacteriol., 39, 393–396 (1989).
  • 12) Miyajima, K., Tanaka, F., Takeuchi, T., and Kuninaga, S., Streptomyces turgidiscabies sp. nov. Int. J. Syst. Bacteriol., 48, 495–502 (1998).
  • 13) Lawrence, C. H., Clark, M. C., and King, R. R., Induction of common scab symptoms in aseptically cultured potato tubers by the vivotoxin, thaxtomin. Phytopathology, 80, 606–608 (1990).
  • 14) Fry, B. A., and Loria, R., Thaxtomin A: evidence for a plant cell wall target. Physiol. Mol. Plant Pathol., 60, 1–8 (2002).
  • 15) Healy, F. G., Krasnoff, S. B., Wach, M., Gibson, D. M., and Loria, R., Involvement of a cytochrome P450 monooxygenase in thaxtomin A biosynthesis by Streptomyces acidiscabies. J. Bacteriol., 184, 2019–2029 (2002).
  • 16) Healy, F. G., Wach, M., Krasnoff, S. B., Gibson, D. M., and Loria, R., The txtAB genes of the plant pathogen Streptomyces acidiscabies encode a peptide synthetase required for phytotoxin thaxtomin A production and pathogenicity. Mol. Microbiol., 38, 794–804 (2000).
  • 17) Kers, J. A., Wach, M. J., Krasnoff, S. B., Widom, J., Cameron, K. D., Bukhalid, R. A., Gibson, D. M., Crane, B. R., and Loria, R., Nitration of a peptide phytotoxin by bacterial nitric oxide synthase. Nature, 429, 79–82 (2004).
  • 18) Wach, M. J., Kers, J. A., Krasnoff, S. B., Loria, R., and Gibson, D. M., Nitric oxide synthase inhibitors and nitric oxide donors modulate the biosynthesis of thaxtomin A, a nitrated phytotoxin produced by Streptomyces spp. Nitric Oxide, 12, 46–53 (2005).
  • 19) Lehtonen, M. J., Rantala, H., Kreuze, J. F., Bång, H., Kuisma, L., Koski, P., Virtanen, E., Vihlman, K., and Valkonen, J. P. T., Occurrence and survival of potato scab pathogens (Streptomyces species) on tuber lesions: quick diagnosis based on a PCR-based assay. Plant Pathol., 53, 280–287 (2004).
  • 20) Conn, K. L., and Leci, E., A quantitative method for determining soil populations of Streptomyces and differentiating potential potato scab-inducing strains. Plant Dis., 82, 631–638 (1998).
  • 21) Bouchek-Mechiche, K., Guerin, C., Jouan, B., and Gardan, L., Streptomyces species isolated from potato scabs in France: numerical analysis of “Biotype-100” carbon source assimilation data. Res. Microbiol., 149, 653–663 (1998).
  • 22) Paradis, E., Goyer, C., Hodge, N. C., Hogue, R., Stall, R. E., and Beaulieu, C., Fatty acid and protein profiles of Streptomyces scabies strains isolated in eastern Canada. Int. J. Syst. Bacteriol., 44, 561–564 (1994).
  • 23) Faucher, E., Paradis, E., Goyer, C., Hodge, N. C., Hogue, R., Stall, R. E., and Beaulieu, C., Characterization of Streptomycetes causing deep-pitted scab of potato in Quebec Canada. Int. J. Syst. Bacteriol., 45, 222–225 (1995).
  • 24) Kinkel, L. L., Bowers, J. H., Shimizu, K., Neeko-Eckwall, E. C., and Schottel, J. L., Quantitative relationships among thaxtomin A production, potato scab severity, and fatty acid composition in Streptomyces. Can. J. Microbiol., 44, 768–776 (1998).
  • 25) Kreuze, J. F., Suomalainen, S., Paulin, L., and Valkonen, J. P. T., Phylogenetic analysis of 16S rRNA genes and PCR analysis of the nec1 gene from Streptomyces spp. causing common scab, pitted scab, and netted scab in Finland. Phytopathology, 89, 462–469 (1999).
  • 26) Healy, F. G., Bukhalid, R. A., and Loria, R., Characterization of an insertion sequence element associated with genetically diverse plant pathogenic Streptomyces spp. J. Bacteriol., 181, 1562–1568 (1999).
  • 27) Doering-Saad, C., Kämpfer, P., Manulis, S., Kritzman, G., Schneider, J., Zakrzewska-Czerwinska, J., Schrempf, H., and Barash, I., Diversity among Streptomyces strains causing potato scab. Appl. Environ. Microbiol., 58, 3932–3940 (1992).
  • 28) Takeuchi, T., Sawada, H., Tanaka, F., and Matsuda, I., Phylogenetic analysis of Streptomyces spp. causing potato scab based on 16S rRNA sequences. Int. J. Syst. Bacteriol., 46, 476–479 (1996).
  • 29) Park, D. H., Kim, J. S., Kwon, S. W., Wilson, C., Yu, Y. M., Hur, J. H., and Lim, C. K., Streptomyces luridiscabiei sp. nov., Streptomyces puniciscabiei sp. nov. and Streptomyces niveiscabiei sp. nov., which cause potato common scab disease in Korea. Int. J. Syst. Evol. Microbiol., 53, 2049–2054 (2003).
  • 30) Song, J., Lee, S. C., Kang, J. W., Baek, H. J., and Suh, J. W., Phylogenetic analysis of Streptomyces spp. isolated from potato scab lesions in Korea on the basis of 16S rRNA gene and 16S–23S rDNA internally transcribed spacer sequences. Int. J. Syst. Evol. Microbiol., 54, 203–209 (2004).
  • 31) Healy, F. G., and Lambert, D. H., Relationships among Streptomyces spp. causing potato scab. Int. J. Syst. Bacteriol., 41, 479–482 (1991).
  • 32) Bouchek-Mechiche, K., Gardan, L., Normand, P., and Jouan, B., DNA relatedness among strains of Streptomyces pathogenic to potato in France: description of three new species, S. europaeiscabiei sp. nov. and S. stelliscabiei sp. nov. associated with common scab, and S. reticuliscabiei sp. nov. associated with netted scab. Int. J. Syst. Evol. Microbiol., 50, 91–99 (2000).
  • 33) Guy, R. A., Payment, P., Krull, U. J., and Horgen, P. A., Real-time PCR for quantification of Giardia and Cryptosporidium in environmental water samples and sewage. Appl. Environ. Microbiol., 69, 5178–5185 (2003).
  • 34) Shigemori, Y., Mikawa, T., Shibata, T., and Oishi, M., Multiplex PCR: use of heat-stable Thermus thermophilus RecA protein to minimize non-specific PCR products. Nucleic Acids Res., 33, e126 (2005).
  • 35) Rachlin, J., Ding, C., Cantor, C., and Kasif, S., MuPlex: multi-objective multiplex PCR assay design. Nucleic Acids Res., 33 (Web Server issue), W544–547 (2005).
  • 36) Butler, J. M., Ruitberg, C. M., and Vallone, P. M., Capillary electrophoresis as a tool for optimization of multiplex PCR reactions. Fresenius J. Anal. Chem., 369, 200–205 (2001).
  • 37) Lopez, M. M., Bertolini, E., Olmos, A., Caruso, P., Gorris, M. T., Llop, P., Penyalver, R., and Cambra, M., Innovative tools for detection of plant pathogenic viruses and bacteria. Int. Microbiol., 6, 233–243 (2003).
  • 38) Herrera-Leon, S., McQuiston, J. R., Usera, M. A., Fields, P. I., Garaizar, J., and Echeita, M. A., Multiplex PCR for distinguishing the most common phase-1 flagellar antigens of Salmonella spp. J. Clin. Microbiol., 42, 2581–2586 (2004).
  • 39) Probert, W. S., Schrader, K. N., Khuong, N. Y., Bystrom, S. L., and Graves, M. H., Real-time multiplex PCR assay for detection of Brucella spp., B. abortus, and B. melitensis. J. Clin. Microbiol., 42, 1290–1293 (2004).
  • 40) Maldonado, Y., Fiser, J. C., Nakatsu, C. H., and Bhunia, A. K., Cytotoxicity potential and genotypic characterization of Escherichia coli isolates from environmental and food sources. Appl. Environ. Microbiol., 71, 1890–1898 (2005).
  • 41) Song, Y., Liu, C., McTeague, M., Vu, A., Liu, J. Y., and Finegold, S. M., Rapid identification of Gram-positive anaerobic coccal species originally classified in the genus Peptostreptococcus by multiplex PCR assays using genus- and species-specific primers. Microbiology, 149, 1719–1727 (2003).
  • 42) Tamaki, H., Sekiguchi, Y., Hanada, S., Nakamura, K., Nomura, N., Matsumura, M., and Kamagata, Y., Comparative analysis of bacterial diversity in freshwater sediment of a shallow eutrophic lake by molecular and improved cultivation-based techniques. Appl. Environ. Microbiol., 71, 2162–2169 (2005).
  • 43) Bukhalid, R. A., Chung, S. Y., and Loria, R., nec1, a gene conferring a necrogenic phenotype, is conserved in plant-pathogenic Streptomyces spp. and linked to a transposase pseudogene. Mol. Plant Microbe Interact., 11, 960–967 (1998).
  • 44) Kers, J. A., Cameron, K. D., Joshi, M. V., Bukhalid, R. A., Morello, J. E., Wach, M. J., Gibson, D. M., and Loria, R., A large, mobile pathogenicity island confers plant pathogenicity on Streptomyces species. Mol. Microbiol., 55, 1025–1033 (2005).
  • 45) Elnifro, E. M., Ashshi, A. M., Cooper, R. J., and Klapper, P. E., Multiplex PCR: optimization and application in diagnostic virology. Clin. Microbiol. Rev., 13, 559–570 (2000).
  • 46) Schoske, R., Vallone, P. M., Ruitberg, C. M., and Butler, J. M., Multiplex PCR design strategy used for the simultaneous amplification of 10 Y chromosome short tandem repeat (STR) loci. Anal. Bioanal. Chem., 375, 333–343 (2003).
  • 47) Markoulatos, P., Siafakas, N., and Moncany, M., Multiplex polymerase chain reaction: a practical approach. J. Clin. Lab. Anal., 16, 47–51 (2002).
  • 48) Tang, T., Huang, J., Zhong, Y., and Shi, S., High-throughput S-SAP by fluorescent multiplex PCR and capillary electrophoresis in plants. J. Biotechnol., 114, 59–68 (2004).
  • 49) Krenke, B. E., Viculis, L., Richard, M. L., Prinz, M., Milne, S. C., Ladd, C., Gross, A. M., Gornall, T., Frappier, J. R., Eisenberg, A. J., Barna, C., Aranda, X. G., Adamowicz, M. S., and Budowle, B., Validation of a male-specific, 12-locus fluorescent short tandem repeat (STR) multiplex. Forensic Sci. Int., 151, 111–124 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.