318
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

A Comparison of the Potential Unfavorable Effects of Oxycholesterol and Oxyphytosterol in Mice: Different Effects, on Cerebral 24S-Hydroxychoelsterol and Serum Triacylglycerols Levels

, , , &
Pages 3128-3133 | Received 16 Apr 2008, Accepted 09 Aug 2008, Published online: 22 May 2014

  • 1) Paresh, C. D., and Geofferey, P. S., “Cholesterol and Phytosterols Oxidation Products: Analysis, Occurrence, and Biological Effects” Chapter 15, AOCS Press, IL, pp. 319–334 (2002).
  • 2) Lampi, A. M., Juntunen, L., Toivo, J., and Piironen, V., Determination of thermo-oxidation products of plant sterols. J. Chromatogr., B777, 83–92 (2002).
  • 3) Bortolomeazzi, R., Cordaro, F., Pizzale, L., and Conte, L. S., Presence of phytosterol oxides in crude vegetable oils and their fate during refining. J. Agric. Food Chem., 51, 2394–2401 (2003).
  • 4) Dutta, P. C., Studies on phytosterol oxides. II. Content in some vegetable oils and in French fries prepared in these oils. J. Am. Oil Chem. Soc., 74, 659–666 (1997).
  • 5) Oehrl, L. L., Hansen, A. P., Rohrer, C. A., Fenner, G. P., and Boyd, L. C., Oxidation of phytosterols in a test food system. J. Am. Oil Chem. Soc., 78, 1073–1078 (2001).
  • 6) Osada, K., Sasaki, E., and Sugano, M., Lymphatic absorption of oxidized cholesterol in rats. Lipids, 29, 555–559 (1994).
  • 7) Ando, M., Tomoyori, H., and Imaizumi, K., Dietary cholesterol-oxidation products accumulate in serum and liver in apolipoprotein E-deficient mice, but do not accelerate atherosclerosis. Br. J. Nutr., 88, 339–345 (2002).
  • 8) Tomoyori, H., Kawata, Y., Higuchi, T., Ichi, I., Sato, H., Sato, M., Ikeda, I., and Imaizumi, K., Phytosterol oxidation products are absorbed in the intestinal lymphatics in rats but do not accelerate atherosclerosis in apolipoprotein E-deficient mice. J. Nutr., 134, 1690–1696 (2004).
  • 9) Tomoyori, H., Carvajal, O., Nakayama, M., Kishi, T., Sato, M., Ikeda, I., and Imaizumi, K., Lymphatic transport of dietary cholesterol oxidation products, cholesterol and triacylglycerols in rats. Biosci. Biotechnol. Biochem., 66, 828–834 (2002).
  • 10) Brown, A. J., and Jessup, W., Oxysterols and atherosclerosis. Atherosclerosis, 142, 1–28 (1999).
  • 11) Staprans, I., Pan, X. M., Rapp, J. H., and Feingold, K. R., The role of dietary oxidized cholesterol and oxidized fatty acids in the development of atherosclerosis. Mol. Nutr. Food Res., 49, 1075–1082 (2005).
  • 12) Björkhem, I., Meaney, S., and Diczfalusy, U., Oxysterols in human circulation: which role do they have? Curr. Opin. Lipidol., 13, 247–253 (2002).
  • 13) Hovenkamp, E., Demonty, I., Plat, J., Lütjohann, D., Mensink, R. P., and Trautwein, E. A., Biological effects of oxidized phytosterols: a review of current knowledge. Prog. Lipid Res., 47, 37–49 (2008).
  • 14) Reeves, P. G., Nielsen, F. H., and Fahey, G. C., Jr., AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc Writing Committee on recommendation of the AIN-76A rodent diet. J. Nutr., 123, 1939–1951 (1993).
  • 15) Ikeda, I., Nakagiri, H., Sugano, M., Ohara, S., Hamada, T., Nonaka, M., and Imaizumi, K., Mechanism of phytosterolemia in stroke-prone spontaneously hypertensive and WKY rats. Metabolism, 50, 1361–1368 (2001).
  • 16) Nagao, K., Sato, M., Takenaka, M., Ando, M., Iwamoto, M., and Imaizumi, K., Feeding unsaponifiable compounds from rice bran oil does not alter hepatic mRNA abundance for cholesterol metabolism-related proteins in hypercholesterolemic rats. Biosci. Biotechnol. Biochem., 65, 371–377 (2001).
  • 17) Lutjohann, D., Breuer, O., Ahlborg, G., Nennesmo, I., Siden, A., Diczfalusy, U., and Bjorkhem, I., Cholesterol homeostasis in the human brain: evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation. Proc. Natl. Acad. Sci., 93, 9799–9804 (1996).
  • 18) Bjorkhem, I., Lutjohann, D., Breuer, O., Sakinis, A., and Wennmalm, A., Importance of a novel oxidative mechanism for elimination of brain cholesterol: turnover of cholesterol and 24(S)-hydroxycholesterol in the rat brain as measured with 18O2 techniques in vivo and vitro. J. Biol. Chem., 272, 30178–30184 (1997).
  • 19) Bjorkhem, I., Lutjohann, D., Diczfalusy, U., Stahle, L., Ahlborg, G., and Wahren, J., Cholesterol homeostasis in the human brain: turnover of 24S-hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation. J. Lipid Res., 39, 1594–1600 (1998).
  • 20) Lund, E. G., Guileyardo, J. M., and Russell, D. W., cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc. Natl. Acad. Sci., 96, 7238–7243 (1999).
  • 21) Lund, E. G., Xie, C., Kotti, T., Turley, S. D., Dietschy, J. M., and Russell, D. W., Knockout of the cholesterol 24-hydroxylase gene in mice reveals a brain-specific mechanism of cholesterol turnover. J. Biol. Chem., 278, 22980–22988 (2003).
  • 22) Schultz, J. R., Tu, H., Luk, A., Repa, J. J., Medina, J. C., Li, L., Schwendner, S., Wang, S., Thoolen, M., Mangelsdorf, D. J., Lustig, K. D., and Shan, B., Role of LXRs in the control of lipogenesis. Genes Dev., 14, 2831–2838 (2000).
  • 23) Fu, X., Menke, J. G., Chen, Y., Zhou, G., MacNaul, K. L., Wright, S. D., Sparrow, C. P., and Lund, E. G., 27-hydroxycholesterol is an endogenous ligand for liver X receptor in cholesterol-loaded cells. J. Biol. Chem., 276, 38378–38387 (2001).
  • 24) DeBose-Boyd, R. A., Ou, J., Goldstein, J. L., and Brown, M. S., Expression of sterol regulatory element-binding protein 1c (SREBP-1c) mRNA in rat hepatoma cells requires endogenous LXR ligands. Proc. Natl. Acad. Sci. USA, 98, 1477–1482 (2001).
  • 25) Inaba, T., Matsuda, M., Shimamura, M., Takei, N., Terasaka, N., Ando, Y., Yasumo, H., Koishi, R., Makishima, M., and Shimomura, I., Angiopoietin-like protein 3 mediates hypertriglyceridemia induced by the liver X receptor. J. Biol. Chem., 278, 21344–21351 (2003).
  • 26) Janowski, B. A., Willy, P. J., Devi, T. R., Falck, J. R., and Mangelsdorf, D. J., An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature, 383, 728–731 (1996).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.