110
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Supramolecular Complex Formation and Crystallization of Isocitrate Dehydrogenase from Thermus thermophilus HB8: Preliminary Studies with X-Ray Crystallography and Atomic Force Microscopy

, &
Pages 2369-2376 | Received 21 Apr 2008, Accepted 26 May 2008, Published online: 22 May 2014

  • 1) Steen, I. H., Madern, D., Karlstrom, M., Lien, T., Ladenstein, R., and Birkeland, N. K., Comparison of isocitrate dehydrogenase from three hyperthermophiles reveals differences in thermostability, cofactor specificity, oligomeric state, and phylogenetic affiliation. J. Biol. Chem., 276, 43924–43931 (2001).
  • 2) Steen, I. H., Lien, T., and Birkeland, N. K., Biochemical and phylogenetic characterization of isocitrate dehydrogenase from a hyperthermophilic archaeon, Archaeoglobus fulgidus. Arch. Microbiol., 168, 412–420 (1997).
  • 3) Chen, R. D., and Gadal, P., Structure, function and regulation of NAD and NADP dependent isocitrate dehydrogenase in higher plants and in other organisms. Plant Physiol. Biochem., 28, 411–427 (1990).
  • 4) Sahara, T., Takada, Y., Takeuchi, Y., Yamaoka, N., and Fukunaga, N., Cloning, sequencing, and expression of a gene encoding the monomeric isocitrate dehydrogenase of the nitrogen-fixing bacterium, Azotobacter vinelandii. Biosci. Biotechnol. Biochem., 66, 489–500 (2002).
  • 5) Leyland, M. L., and Kelly, R., Purification and characterization of a monomeric isocitrate dehydrogenase with dual coenzyme specificity from the photosynthetic bacterium Rhodomicrobium vannielii. Eur. J. Biochem., 202, 85–93 (1991).
  • 6) Fukunaga, N., Imagawa, S., Sahara, T., Ishii, A., and Suzuki, M., Purification and characterization of monomeric isocitrate dehydrogenase with NADP+-specificity from Vibrio parahaemolyticus Y-4. J. Biochem., 112, 849–855 (1992).
  • 7) Yoneta, M., Sahara, T., Nitta, K., and Takada, Y., Characterization of chimeric isocitrate dehydrogenases of a mesophilic nitrogen-fixing bacterium, Azotobacter vinelandii, and a psychrophilic bacterium, Colwellia maris. Curr. Microbiol., 48, 383–388 (2004).
  • 8) Hurley, J. H., Dean, A. M., Sohl, J. L., Koshland, D. E., Jr., and Stroud, R. M., Regulation of an enzyme by phosphorylation at the active site. Science, 249, 1012–1016 (1990).
  • 9) Miyazaki, K., Eguchi, H., Yamagishi, A., Wakagi, T., and Oshima, T., Molecular cloning of the isocitrate dehydrogenase gene of an extreme thermophile, Thermus thermophilus HB8. Appl. Environ. Microbiol., 58, 93–98 (1992).
  • 10) Jeong, J.-J., Sonoda, T., Fushinobu, S., Shoun, H., and Wakagi, T., Crystal structure of isocitrate dehydrogenase from Aeropyrum pernix. Proteins, 55, 1087–1089 (2004).
  • 11) Singh, S. K., Matsuno, K., LaPorte, D. C., and Banaszak, L. J., Crystal structure of Bacillus subtilis isocitrate dehydrogenase at 1.55 Å: insights into the nature of substrate specificity exhibited by Escherichia coli isocitrate dehydrogenase kinase/phosphatase. J. Biol. Chem., 276, 26154–26163 (2001).
  • 12) Hurley, J. H., Thorsness, P. E., Ramalingam, V., Helmers, N. H., and Koshland, D. E., Jr., Structure of a bacterial enzyme regulated by phosphorylation, isocitrate dehydrogenase. Proc. Natl. Acad. Sci. USA, 86, 8635–8639 (1989).
  • 13) Karlstrom, M., Steen, I. H., Madern, D., Fedoy, A. E., Birkeland, N. K., and Ladenstein, R., The crystal structure of a hyperthermostable subfamily II isocitrate dehydrogenase from Thermotoga maritima. FEBS J., 273, 2851–2868 (2006).
  • 14) Ceccarelli, C., Grodsky, N. B., Ariyaratne, N., Colman, R. F., and Bahnson, B., Crystal structure of porcine mitochondrial NADP+-dependent isocitrate dehydrogenase complexed with Mn2+ and isocitrate: insights into the enzyme mechanism. J. Biol. Chem., 277, 43454–43462 (2002).
  • 15) Yasutake, T., Watanabe, S., Yao, M., Takada, Y., Fukunaga, N., and Tanaka, I., Crystallization and preliminary X-ray diffraction studies of monomeric isocitrate dehydrogenase by the MAD method using Mn atoms. Acta Cryst., D57, 1682–1685 (2001).
  • 16) Imada, K., Sato, M., Tanaka, N., Katsube, Y., Matsuura, Y., and Oshima, T., Three-dimensional structure of a highly thermostable enzyme, 3-isopropylmalate dehydrogenase of Thermus thermophilus at 2.2 Å resolution. J. Mol. Biol., 222, 725–738 (1991).
  • 17) Rossman, M. G., Moras, D., and Olsen, K. W., Chemical and biological evolution of a nucleotide-binding protein. Nature, 250, 194–199 (1974).
  • 18) Rossman, M. G., and van Beek, C. G., Data processing. Acta Cryst., D55, 1631–1640 (1999).
  • 19) Imada, K., Inagaki, K., Matsunami, H., Kawaguchi, H., Tanaka, H., Tanaka, N., and Namba, K., Structure of 3-isopropylmalate dehydrogenase in complex with 3-isopropylmalate at 2.0 Å resolution: the role of Glu88 in the unique substrate-recognition mechanism. Structure, 6, 971–982 (1998).
  • 20) Miyazaki, K., Yaoi, T., and Oshima, T., Expression, purification, and substrate specificity of isocitrate dehydrogenase from Thermus thermophilus HB8. Eur. J. Biochem., 221, 899–903 (1994).
  • 21) Ohzeki, M., Yaoi, T., Moriyama, H., Oshima, T., and Tanaka, N., Crystallization and preliminary X-ray studies of isocitrate dehydrogenase from Thermus thermophilus HB8. J. Biochem., 118, 679–680 (1995).
  • 22) Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685 (1970).
  • 23) Leslie, A. G. W., “Joint CCP4 and ESF-EACMB Newsletter on Protein Crystallography, No. 26,” Daresbury Laboratory, Warrington (1992).
  • 24) CCP4 (Collaborative Computing Project No. 4), The CCP4 suite: programs for protein crystallography. Acta Cryst., D50, 760–763 (1994).
  • 25) Scabert, F. A., Henn, C., and Engel, A., Native Escherichia coli OmpF porin surfaces probed by atomic force microscopy. Science, 268, 92–94 (1995).
  • 26) Scheuring, S., Reiss-Husson, F., Engel, A., Rigaud, J.-L., and Ranck, J.-L., High-resolution AFM topographs of Rubrivivax gelatinosus light-harvesting complex LH2. EMBO J., 20, 3029–3035 (2001).
  • 27) Kunz, W., Henle, J., and Ninham, B. W., “Zur Lehre von der Wirkung der Salze” (On the Science of the Effect of Salts): Franz Hofmeister’s historical papers. Curr. Opin. Coll. Interface Sci., 9, 19–37 (2004).
  • 28) Matthews, B. W., Solvent content of protein crystals. J. Mol. Biol., 33, 491–497 (1968).
  • 29) Vesenka, J., Manne, S., Giberson, R., Marsh, T., and Henderson, E., Colloidal gold particles as an incompressible atomic force microscope imaging standard for assessing the compressibility of biomolecules. Biophys. J., 65, 992–997 (1993).
  • 30) Keys, D. A., and McAlister-Henn, L., Subunit structure, expression, and function of NAD(H)-specific isocitrate dehydrogenase in Saccharomyces cerevisiae. J. Bacteriol., 172, 4280–4287 (1990).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.