201
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Cyclomaltodextrin Glucanotransferase-Catalyzed Transglycosylation from Dextrin to Alkanol Maltosides

, , , , , , & show all
Pages 3006-3010 | Received 01 May 2008, Accepted 15 Jul 2008, Published online: 22 May 2014

  • 1) Hill, K., and Rhode, O., Sugar-based surfactants for consumer products and technical applications. Lipid-Fett., 101, 25–33 (1999).
  • 2) Millqvist-Fureby, A., Gill, I. S., and Vulfson, E. N., Enzymatic transformations in supersaturated substrate solutions: I. A general study with glycosidases. Biotechnol. Bioeng., 60, 190–196 (1998).
  • 3) Millqvist-Fureby, A., MacManus, D. A., Davies, S., and Vulfson, E. N., Enzymatic transformations in supersaturated substrate solutions: II. Synthesis of disaccharides via transglycosylation. Biotechnol. Bioeng., 60, 197–203 (1998).
  • 4) Kobayashi, T., Adachi, S., Nakanishi, K., and Matsuno, R., Synthesis of alkyl glycosides through β-glucosidase-catalyzed condensation in an aqueous-organic biphasic system and estimation of the equilibrium constants for their formation. J. Mol. Cat. B: Enzymatic, 11, 13–21 (2000).
  • 5) Gargouri, M., Smaali, I., Maugard, T., Legoy, M. D., and Marzouki, N., Fungus β-glycosidases: immobilization and use in alkyl-β-glycoside synthesis. J. Mol. Cat. B: Enzymatic, 29, 89–94 (2004).
  • 6) Lirdprapamongkol, K., and Svasti, J., Alkyl glucoside synthesis using Thai rosewood β-glucosidase. Biotechnol. Lett., 22, 1889–1894 (2000).
  • 7) Park, T.-H., Choi, K.-W., Park, C.-S., Lee, S.-B., Kang, H.-Y., and Shon, K.-J., Substrate specificity and transglycosylation catalyzed by a thermostable β-glucosidase from marine hyperthermophile Thermotoga neapolitana. Appl. Microbiol. Biotechnol., 69, 411–422 (2005).
  • 8) Gao, C., Mayon, P., MacManus, D. A., and Vulfson, E. N., Novel enzymatic approach to the synthesis of flavonoid glycosides and their esters. Biotechnol. Bioeng., 71, 235–243 (2001).
  • 9) Plou, F. J., Cruces, M. A., Ferrer, M., Fuentes, G., Pastor, E., Bernabe, M., Christensen, M., Comelles, F., Parra, J. L., and Ballesteros, A., Enzymatic acylation of di- and trisaccharides with fatty acids: choosing the appropriate enzyme, support and solvent. J. Biotechnol., 96, 55–66 (2002).
  • 10) van Doren, H. A., Smits, E., Pestman, J. M., Engbert, J. B. F. N., and Kellogg, R. M., Mesogenic sugars. From aldose to liquid crystals and surfactants. Chem. Soc. Rev., 29, 183–199 (2000).
  • 11) Kometani, T., Terada, Y., Nishimura, T., Takii, H., and Okada, S., Synthesis of hesperidin glycosides by cyclodextrin glucanotransferase from an alkalophilic Bacillus species in alkaline pH and properties of hesperidin glucosides. Biosci. Biotechnol. Biochem., 58, 1990–1994 (1994).
  • 12) Okada, K., Zhao, H., Izumi, M., Nakajima, S., and Baba, N., Glucosylation of sucrose laurate with cyclodextrin glucanotransferase. Biosci. Biotechnol. Biochem., 71, 826–829 (2007).
  • 13) Paulsen, H., and Paal, M., Blocksynthesis von O-Glycopeptiden und anderen T-Antigen Strukturen. Carbohydr. Res., 135, 71–84 (1984).
  • 14) The numbering of carbons in glycoside moiety is described in Scheme 1. Glc2-Bu (3a): 1H NMR δH (CD3OD): 0.83 (3H, t, J=7.4 Hz, CH3), 1.31 (2H, m, CH 2CH3), 1.50 (2H, m, CH 2CH2CH3), 3.16–3.81 (14H, OCH 2, and protons on the carbons of the maltose), 4.16 (1H, d, J=8.1 Hz, 1-H), 5.08 (1H, d, J=3.9 Hz, 1′-H). ESI-MS [M + NH4]+ m⁄z 416.3. Calcd. for [M + NH4]+, 416.2. Glc3-Bu (4): 1H NMR δH (CD3OD): 0.93 (3H, t, J=7.6 Hz, CH3), 1.40 (2H, m, CH 2CH3), 1.59 (2H, m, CH 2CH2CH3), 3.22–3.39 (20H, OCH 2, and protons on the sugar carbons), 4.28 (1H, d, J=7.8, 1-H), 5.13 (1H, d, J=3.8 Hz, 1′-H), 5.16 (1H, d, J=3.8 Hz, 1″-H). ESI-MS [M + NH4]+ m⁄z 578.2. Calcd. for [M + NH4]+, 578.3. Glc4-Bu (5): 1H NMR δH (CD3OD): 0.92 (3H, t, J=7.6 Hz, CH3), 1.40 (2H, m, CH 2CH3), 1.60 (2H, m, CH 2CH2CH3), 3.25–3.89 (26H, OCH 2, and protons on the sugar carbons), 4.30 (1H, d, J=7.8 Hz, 1-H), 5.14 (1H, d, J=3.8 Hz, 1′-H), 5.17 (1H, d, J=3.8 Hz, 1″-H), 5.19 (1H, d, J=3.8 Hz, 1''″-H). ESI-MS [M + NH4]+ m⁄z 740.4. Calcd. for [M + NH4]+, 740.3. Glc2-Oc (3b): 1H NMR δH (CD3OD): 0.81 (3H, t, J=6.6 Hz, CH3), 1.21 (8H, m, 4×CH 2), 1.53 (4H, m, 2×CH 2), 3.05–3.86 (15H, OCH 2, and protons on the sugar carbons), 3.94 (1H, d, J=7.8 Hz, 1-H), 5.04 (1H, d, J=3.7 Hz, 1′-H). ESI-MS [M + NH4]+ m⁄z 472.2. Calcd. for [M + NH4]+, 472.2. Glc3-Oc (6): 1H NMR δH (CD3OD): 0.81 (3H, t, J=6.9 Hz, CH3), 1.20 (8H, m, 4×CH 2), 1.52 (4H, m, 2×CH 2), 3.10–3.64 (20H, OCH 2, and protons on the sugar carbons), 4.18 (1H, d, 1-H), 5.10 (1H, d, J=3.7 Hz, 1′-H), 5.12 (1H, d, J=3.7 Hz, 1″-H). ESI-MS [M + NH4]+ m⁄z 634.2. Calcd. for [M + NH4]+, 634.3. Glc4-Oc (7): 1H NMR δH (CD3OD): 0.91 (3H, t, J=6.9 Hz, CH3), 1.29 (6H, m, 3×CH 2), 1.38 (2H, m, CH 2CH3), 1.61 (4H, m, 2×CH 2), 3.17–4.00 (26H, OCH 2, and protons on the sugar carbons), 4.32 (1H, d, J=7.8 Hz, 1-H), 5.05 (1H, d, J=3.9 Hz, 1′-H), 5.07 (1H, d, J=3.9 Hz, 1″-H) 5.10 (1H, d, J=3.9 Hz, 1''″-H). ESI-MS (M + NH4)+ m⁄z 796.4. Calcd. for [M + NH4]+, 796.4. Glc2-La (3c): 1H NMR δH (CD3OD): 0.89 (3H, t, J=6.6 Hz, CH3), 1.29 (14H, m, 7×CH 2), 1.35 (2H, m, CH 2CH3), 1.61 [4H, m, OCH2(CH 2)2], 3.19–.... (Remark: This note is truncated in the html because it exceeds the limit of the system (4000 characters per note). The complete text is given in the pdf.)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.