324
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Carotenoids in a Corynebacterineae, Gordonia terrae AIST-1: Carotenoid Glucosyl Mycoloyl Esters

, , , &
Pages 2615-2622 | Received 01 May 2008, Accepted 05 Jul 2008, Published online: 22 May 2014

  • 1) Tsukamura, M., Proposal of a new genus, Gordona, for slightly acid-fast organisms occurring in sputa of patients with pulmonary disease and in soil. J. Gen. Microbiol., 68, 15–26 (1971).
  • 2) Goodfellow, M., and Alderson, G., The actinomycete-genus Rhodococcus: a home for the ‘rhodochrous’ complex. J. Gen. Microbiol., 100, 99–122 (1977).
  • 3) Stackebrandt, E., Smida, J., and Collins, M. D., Evidence of phylogenetic heterogeneity within the genus Rhodococcus: revival of the genus Godrona (Tsukamura). J. Gen. Appl. Microbiol., 34, 341–348 (1988).
  • 4) Stackebrandt, E., Rainey, F. A., and Ward-Rainey, N. L., Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int. J. Syst. Bacteriol., 47, 479–491 (1997).
  • 5) Yassin, A. F., Shen, F.-T., Hupfer, H., Arun, A. B., Lai, W.-A., Rekha, P. D., and Young, C. C., Gordonia malaquae sp. nov., isolated from sludge of a wastewater treatment plant. Int. J. Syst. Evol. Microbiol., 57, 1065–1068 (2007).
  • 6) Iida, S., Taniguchi, H., Kageyama, A., Yazawa, K., Chibana, H., Murata, S., Nomura, F., Kroppenstedt, R. M., and Mikami, Y., Gordonia otitidis sp. nov., isolated from a patient with external otitis. Int. J. Syst. Evol. Microbiol., 55, 1871–1876 (2005).
  • 7) de Miguel, T., Sieiro, C., Poza, M., and Villa, T. G., Isolation and taxonomic study of a new canthaxanthin-containing bacterium, Gordonia japoae MV-1 sp. nov. Int. Microbiol., 3, 107–111 (2000).
  • 8) Banh, Q., Arenskötter, M., and Steinbüchel, A., Establishment of Tn5096-based transposon mutagenesis in Gordonia polyisoprenivorans. App. Environ. Microbiol., 71, 5077–5084 (2005).
  • 9) Matsui, T., and Maruhashi, K., Isolation of carotenoid-deficient mutant from alkylated dibenzothiophene desulfurizing nocardioform bacteria, Gordonia sp. TM414. Cur. Microbiol., 48, 130–134 (2004).
  • 10) Britton, G., Liaaen-Jensen, S., and Pfander, H., “Carotenoids Handbook,” Birkhäuser, Basel (2004).
  • 11) Takaichi, S., Ishidsu, J., Seki, T., and Fukuda, S., Carotenoid pigments from Rhodococcus rhodochrous RNMS1: two monocyclic carotenoids, a carotenoid monoglycoside and carotenoid glycoside monoesters. Agric. Biol. Chem., 54, 1931–1937 (1990).
  • 12) Takaichi, S., Tamura, Y., Azegami, K., Yamamoto, Y., and Ishidsu, J., Carotenoid glucoside mycolic acid esters from the nocardioform actinomycetes, Rhodocococcus rhodochrous. Phytochemistry, 45, 505–508 (1997).
  • 13) Takaichi, S., and Ishidsu, J., Influence of growth temperature on compositions of carotenoids and fatty acids from carotenoid glucoside ester and from cellular lipids in Rhodococcus rhodochrous RNMS1. Biosci. Biotechnol. Biochem., 57, 1886–1889 (1993).
  • 14) Takaichi, S., Tamura, Y., Miyamamoto, T., Azegami, K., Yamamoto, Y., and Ishidsu, J., Carotenogenesis pathway of novel carotenoid glucoside mycolic acid esters in Rhodococcus rhodochrous using carotenogenesis mutants and inhibitors. Biosci. Biotechnol. Biochem., 63 2014–2016 (1999).
  • 15) Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 25, 3389–3402 (1997).
  • 16) Thompson, J. D., Higgins, D. G., and Gibson, T. J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22, 4673–4680 (1994).
  • 17) Saitou, N., and Nei, M., The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4, 406–425 (1987).
  • 18) Kumar, S., Tamura, K., and Nei, M., MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform., 5, 150–163 (2004).
  • 19) Felsenstein, J., Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–791 (1985).
  • 20) Takaichi, S., and Shimada, K., Characterization of carotenoids in photosynthetic bacteria. Methods Enzymol., 213, 374–385 (1992).
  • 21) Takaichi, S., and Ishidsu, J., Carotenoid glycoside ester from Rhodococcus rhodochrous. Methods Enzymol., 213, 366–374 (1992).
  • 22) Lutnaes, B. F., Oren, A., and Liaaen-Jensen, S., New C40-carotenoid acyl glycoside as principal carotenoid in Salinibacter ruber, an extremely halophilic eubacterium. J. Nat. Prod., 65, 1340–1343 (2002).
  • 23) Takaichi, S., Maoka, T., Hanada, S., and Imhoff, J. F., Dihydroxylycopene diglucoside diesters: a novel class of carotenoids from the phototrophic purple sulfur bacteria Halorhodospira abdelmalekii and Halorhodospira halochloris. Arch. Microbiol., 175, 161–167 (2001).
  • 24) Buchecker, R., and Noack, K., Circular dichroism. In “Carotenoids, Vol. 1B, Spectroscopy,” eds. Britton, G., Liaaen-Jensen, S., and Pfander, H., Birkhäuser, Basel, pp. 63–116 (1995).
  • 25) Linos, A., Steinbüchel, A., Spröer, C., and Kroppenstedt, R. M., Gordonia polyisoprenivorans sp. nov., a rubber-degrading actinomycete isolated from an automobile tyre. Int. J. Syst. Bacteriol., 49, 1785–1791 (1999).
  • 26) Arpin, N., and Liaaen-Jensen, S., Recherches chimiotaxinomiques sur les champignons. Fungal carotenoids. III. Nouveaux carotenoides, notamment sous forme d’esters tertiaires, isoles de Plectania coccinea (Scop. ex Fr.) Fuck. Phytochemistry, 6, 995–1005 (1967).
  • 27) Hertzberg, S., and Liaaen-Jensen, S., Bacterial carotenoids. XX. The carotenoids of Mycobacterium phlei strain Vera: the structures of the phlei-xanthophylls, two novel tertiary glucosides. Acta Chem. Scand., 21, 15–41 (1967).
  • 28) Rønneberg, H., Andrewes, A. G., Borch, G., Berger, R., and Liaaen-Jensen, S., CD correlation of C-2′ substituted monocyclic carotenoids. Phytochemistry, 24, 309–319 (1985).
  • 29) Vacheron, M.-J., Arpin, N., and Michel, G., Isolement d’esters de phlei-xanthophylle de Nocardia kirovani. Comptes Rendus Acad. Sci., C 271, 881–884 (1970).
  • 30) Tao, L., and Cheng, Q., Novel β-carotene ketolases from non-photosynthetic bacteria for canthaxanthin synthesis. Mol. Gen. Genomics, 272, 530–537 (2004).
  • 31) Tao, L., Picataggio, S., Rouvière, P. E., and Cheng, Q., Asymmetrically acting lycopene β-cyclases (CrtLm) from non-photosynthetic bacteria. Mol. Gen. Genomics, 271, 180–188 (2004).
  • 32) Englert, G., NMR spectroscopy. In “Carotenoids, Vol. 1B, Spectroscopy,” eds. Britton, G., Liaaen-Jensen, S., and Pfander, H., Birkhäuser, Basel, pp. 147–260 (1995).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.