1,083
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Molecular Structure and Properties of Lectin from Tomato Fruit

, , , &
Pages 2640-2650 | Received 07 May 2008, Accepted 23 Jun 2008, Published online: 22 May 2014

  • 1) Nachbar, M. S., Oppenheim, J. D., and Thomas, J. O., Lectins in the U.S. Diet. Isolation and characterization of a lectin from the tomato (Lycopersicon esculentum). J. Biol. Chem., 255, 2056–2061 (1980).
  • 2) Kilpatrick, D. C., Purification and some properties of a lectin from the fruit juice of the tomato (Lycopersicon esculentum). Biochem. J., 185, 269–272 (1980).
  • 3) Merkle, R. K., and Cummings, R. D., Tomato lectin is located predominantly in the locular fluid of ripe tomatoes. Plant Cell, 48, 71–78 (1987).
  • 4) Saito, K., Yagi, H., Baba, K., Goldstein, I. J., and Misaki, A., Purification, properties and carbohydrate-binding specificity of cherry tomato (Lycopersicon esculentum var. Cherry) lectin. Oyo Toshitsu Kagaku (J. Appl. Glycosci.), 43, 331–345 (1996).
  • 5) Naito, Y., Minamihara, T., Ando, A., Marutani, T., Oguri, S., and Nagata, Y., Domain construction of cherry-tomato lectin: relation to newly found 42-kDa protein. Biosci. Biotechnol. Biochem., 65, 86–93 (2001).
  • 6) Saitoh, O., Wang, W. C., Lotan, R., and Fukuda, M., Differential glycosylation and cell surface expression of lysosomal membrane glycoproteins in sublines of a human colon cancer exhibiting distinct metastatic potentials. J. Biol. Chem., 267, 5700–5711 (1992).
  • 7) Bankston, P. W., Porter, G. A., Milici, A. J., and Palade, G. E., Differential and specific labeling of epithelial and vascular endothelial cells of the rat lung by Lycopersicon esculentum and Griffonia simplicifolia I lectins. Eur. J. Cell Biol., 54, 187–195 (1991).
  • 8) Woodley, J. F., Lectins for gastrointestinal targeting—15 years on. J. Drug Target., 7, 325–333 (2000).
  • 9) Raikhel, N. V., and Lee, H. I., Structure and function of chitin-binding proteins. Annu. Rev. Plant Physiol. Plant Mol. Biol., 44, 591–615 (1993).
  • 10) Czapla, T., and Lang, B., Effect of plant lectins on the larval development of european corn borer (Lepidoptera: Pyraidae) and southern corn rootworm (Coleoptera: Chrysomelidae). J. Econ. Entomol., 83, 2480–2485 (1990).
  • 11) Schlumbaum, A., Mauch, F., Vögeli, U., and Boller, T., Plant chitinases are potent inhibitors of fungal growth. Nature, 324, 365–367 (1986).
  • 12) Oguri, S., Analysis of sugar chain-binding specificity of tomato lectin using lectin blot: recognition of high mannose-type N-glycans produced by plants and yeast. Glycoconj. J., 22, 453–461 (2005).
  • 13) Kieliszewski, M. J., Showalter, A. M., and Leykam, J. F., Potato lectin: a modular protein sharing sequence similarities with the extensin family, the hevein lectin family, and snake venom disintegrins (platelet aggregation inhibitors). Plant J., 5, 849–861 (1994).
  • 14) Allen, A. K., Bolwell, G. P., Brown, D. S., Sidebottom, C., and Slabas, A. R., Potato lectin: a three-domain glycoprotein with novel hydroxyproline-containing sequences and sequence similarities to wheat-germ agglutinin. Int. J. Biochem. Cell Biol., 28, 1285–1291 (1996).
  • 15) Ashford, D., Desai, N. N., Allen, A. K., Neuberger, A., O’Neill, M. A., and Selvendran, R. R., Structural studies of the carbohydrate moieties of lectins from potato (Solanum tuberosum) tubers and thorn-apple (Datura stramonium) seeds. Biochem. J., 201, 199–208 (1982).
  • 16) Lerner, D. R., and Raikhel, N. V., The gene for stinging nettle lectin (Urtica dioica agglutinin) encodes both a lectin and a chitinase. J. Biol. Chem., 267, 11085–11091 (1992).
  • 17) Smith, J. J., and Raikhel, N. V., Nucleotide sequences of cDNA clones encoding wheat germ agglutinin isolectins A and D. Plant Mol. Biol., 13, 601–603 (1989).
  • 18) Kilpatrick, D. C., Graham, C., Urbaniak, S. J., Jeffree, C. E., and Allen, A. K., A comparison of tomato (Lycopersicon esculentum) lectin with its deglycosylated derivative. Biochem. J., 220, 843–847 (1984).
  • 19) Kieliszewski, M. J., and Orlando, R., Matrix assisted laser desorption/ionization time-of-flight mass spectrometry of tomato extensin monomers and potato lectin. Phytochemistry, 45, 9–14 (1997).
  • 20) Peumans, W. J., Rouge, P., and Van Damme, E. J., The tomato lectin consists of two homologous chitin-binding modules separated by an extensin-like linker. Biochem. J., 376, 717–724 (2003).
  • 21) Edge, A. S., Faltynek, C. R., Hof, L., Reichert, L. E., Jr., and Weber, P., Deglycosylation of glycoproteins by trifluoromethanesulfonic acid. Anal. Biochem., 118, 131–137 (1981).
  • 22) Bendtsen, J. D., Nielsen, H., von Heijne, G., and Brunak, S., Improved prediction of signal peptides: signalP 3.0. J. Mol. Biol., 340, 783–795 (2004).
  • 23) Showalter, A. M., Structure and function of plant cell wall proteins. Plant Cell, 5, 9–23 (1993).
  • 24) Danhash, N., Wagemakers, C. A., van Kan, J. A., and de Wit, P. J., Molecular characterization of four chitinase cDNAs obtained from Cladosporium fulvum-infected tomato. Plant Mol. Biol., 22, 1017–1029 (1993).
  • 25) Van Damme, E. J., Barre, A., Rouge, P., and Peumans, W. J., Potato lectin: an updated model of a unique chimeric plant protein. Plant J., 37, 34–45 (2004).
  • 26) Wright, C. S., Crystal structure of a wheat germ agglutinin/glycophorin-sialoglycopeptide receptor complex. Structural basis for cooperative lectin-cell binding. J. Biol. Chem., 267, 14345–14352 (1992).
  • 27) Harata, K., and Muraki, M., Crystal structures of Urtica dioica agglutinin and its complex with tri-N-acetylchitotriose. J. Mol. Biol., 297, 673–681 (2000).
  • 28) Edge, A. S., Deglycosylation of glycoproteins with trifluoromethanesulphonic acid: elucidation of molecular structure and function. Biochem. J., 376, 339–350 (2003).
  • 29) Desai, N. N., Allen, A. K., and Neuberger, A., The properties of potato (Solanum tuberosum) lectin after deglycosylation by trifluoromethanesulphonic acid. Biochem. J., 211, 273–276 (1983).
  • 30) Van Holst, G. J., and Varner, J. E., Reinforced polyproline II conformation in a hydroxyproline-rich cell wall glycoprotein from carrot root. Plant Physiol., 74, 247–251 (1984).
  • 31) Stafstrom, J. P., and Staehelin, L. A., The role of carbohydrate in maintaining extensin in an extended conformation. Plant Physiol., 81, 242–246 (1986).
  • 32) Vuorela, A., Myllyharju, J., Nisshi, R., Pihlajaniemi, T., and Kivirikko, K. I., Assembly of human prolyl 4-hydroxylase and type III collagen in the yeast Pichia pastoris: formation of a stable enzyme tetramer requires coexpression with collagen and assembly of stable collagen requires coexpression with prolyl 4-hydroxylase. EMBO J., 16, 6702–6712 (1997).
  • 33) Goto, M., Protein O-glycosylation in fungi: diverse structures and multiple functions. Biosci. Biotechnol. Biochem., 71, 1415–1427 (2007).
  • 34) Kawashima, H., Sueyoshi, S., Li, H., Yamamoto, K., and Osawa, T., Carbohydrate binding specificities of several poly-N-acetyllactosamine-binding lectins. Glycoconj. J., 7, 323–334 (1990).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.